2508.05797v1 [cs.DC] 7 Aug 2025

arXiv

Accelerating Data Chunking in Deduplication Systems using Vector Instructions

SREEHARSHA UDAYASHANKAR, University of Waterloo, Canada
ABDELRAHMAN BABA, University of Waterloo, Canada
SAMER AL-KISWANY, University of Waterloo, Canada

Content-defined Chunking (CDC) algorithms dictate the overall space savings that deduplication systems achieve. However, due
to their need to scan each file in its entirety, they are slow and often the main performance bottleneck within data deduplication.
We present VectorCDC, a method to accelerate hashless CDC algorithms using vector CPU instructions, such as SSE / AVX. Our
evaluation shows that VectorCDC is effective on Intel, AMD, ARM, and IBM CPUs, achieving 8.35 X —26.2% higher throughput than

existing vector-accelerated techniques without affecting the deduplication space savings.

CCS Concepts: « Information systems — Cloud based storage; Deduplication; « Networks — Cloud computing; - Computer

systems organization — Single instruction, multiple data.

Additional Key Words and Phrases: Content-defined chunking, SSE/AVX instructions, AVX-512, ARM NEON, IBM VSX

1 Introduction

The amount of data generated and stored on the Internet is growing at an exponential rate [1], and is expected to
exceed 180 zettabytes per year in 2025. Storage capacity alone is not well positioned to handle this data influx, with
the total installed storage capacity in 2020 only being 6.7 zettabytes [1]. Cloud storage providers instead support this
data growth using alternatives such as novel storage paradigms [2, 3], distributed file systems [4, 5] and caches [6, 7],
mechanisms such as data deduplication [8, 9], alongside additional investments in data protection [10].

Previous studies by Microsoft [11] and EMC [12] show that a large amount of redundancy exists in the data stored
on the cloud, especially in file system backups [8, 11], virtual machine backups [12, 13] and shared documents [14]. The
redundancy ratios in these workloads are significant, ranging from 50% to 75%. Mechanisms such as data deduplication
[8] and compression [13] are used to conserve storage space by identifying redundant data, eliminating it, and minimizing
its storage impact, thereby improving efficiency and reducing costs.

Data deduplication consists of four phases [9]; Data Chunking, Chunk Fingerprinting, Metadata Creation, and Data
Storage. Data chunking and chunk fingerprinting are the most computationally intensive [8, 15] of these. While chunk
fingerprinting has received significant optimization attention, with faster hashing algorithms [16, 17] and GPUs [18, 19],
data chunking optimizations have not kept up (§3.1).

In the data chunking phase, the incoming data is divided into small chunks, typically of size 1 — 64 KB. Numerous
data chunking algorithms exist in current literature [20-25] and can be broadly classified into hash-based and hashless
algorithms [15]. As chunking occurs whenever new data is uploaded, this phase is on the critical path, and directly
impacts system performance.

Previous efforts explored accelerating chunking through using vector instructions. SS-CDC [26] uses vector instruc-
tions to accelerate hash-based data chunking algorithms, such as Rabin-Karp chunking [23] and Gear-based chunking
[22]. Unfortunately, this approach only leads to modest improvements in chunking throughput, up to 3.13x, as shown
in §3.2. Parallelizing hash-based chunking using vector instructions is complicated because these algorithms use the

rolling hash of a sliding window of bytes to detect boundaries, inherently creating a computational dependency between

Authors’ Contact Information: Sreeharsha Udayashankar, s2udayas@uwaterloo.ca, University of Waterloo, Waterloo, Canada; Abdelrahman Baba,

ababa@uwaterloo.ca, University of Waterloo, Waterloo, Canada; Samer Al-Kiswany, alkiswany@uwaterloo.ca, University of Waterloo, Waterloo, Canada.

Manuscript submitted to ACM 1

https://arxiv.org/abs/2508.05797v1

2 Udayashankar et al.

adjacent bytes. Consequently, SS-CDC processes different regions of the data in parallel. This approach relies on slow
scatter / gather vector instructions, limiting its performance (§3.2).

We posit that hashless chunking algorithms are better candidates for vector acceleration. Although they achieve
slightly lower space savings compared to their hash-based counterparts (§6), they are up 2x faster and use sim-
ple mathematical operations (e.g., finding a maximum value) that can be accelerated more efficiently using vector
instructions.

We analyzed state-of-the-art hashless algorithms to understand their design and identify opportunities to leverage
vector instructions. We identified that all state-of-the-art hashless algorithms consist of two processing patterns. The
first pattern involves finding local minima or maxima in a data region, which we call Extreme Byte Search, and the
second pattern involves scanning a range of bytes to find values that are greater or lesser than a target value, which we
call Range Scan. We found that, unlike rolling hash functions, these patterns can be efficiently accelerated using vector
instructions.

Using these insights, we present VectorCDC, a technique for accelerating hashless chunking algorithms using vector
instructions. VectorCDC uses a novel design to accelerate the two aforementioned patterns. We accelerate the extreme
byte searches with a novel tree-based search that divides a region of bytes into multiple sub-regions, processes each
region using vector instructions, and uses a tree-based approach to combine their results. We accelerate range scans
with packed scanning, which packs multiple adjacent bytes into vector registers and compares them using a single
vector operation.

We implemented VectorCDC using five different vector instruction sets: SSE-128, AVX-256, and AVX-512 on Intel /
AMD CPUs; NEON-128 on ARM CPUs; and VSX-128 on IBM Power CPUs. We used VectorCDC to accelerate three
state-of-the-art hashless chunking algorithms. We implemented VRAM, VAE, and VMAXP, which are accelerated versions
of the RAM [24], AE [20], and MAXP [27] algorithms, respectively. We compared the performance of our accelerated
algorithms against state-of-the-art hash-based algorithms, hashless algorithms, and SS-CDC [26] accelerated algorithms
using 10 diverse datasets.

Our evaluation (§6) shows that VectorCDC achieves 8.35x — 26.2X higher chunking throughput than SS-CDC'’s
approach, without affecting the space savings achieved by hashless algorithms. VectorCDC-based algorithms achieve up
to 5.51X — 17.6X higher throughput compared to their unaccelerated counterparts. Furthermore, algorithms accelerated
using VectorCDC retain their performance advantage with all five vector instruction sets. We have made our code
publicly available by integrating it with DedupBench! [15]. Due to the large sizes of our datasets (§6), we were unable
to release them all. We have instead provided detailed descriptions to facilitate their recreation for future experiments,
similar to previous literature [20, 21, 24]. In addition, to facilitate reproducing our results, we have publicly released
one of our datasets (DEB) on Kaggle® [28].

The rest of this paper is organized as follows: we discuss relevant background about deduplication and vector
instructions in Section 2. Section 3 motivates our work by discussing deduplication performance bottlenecks and
the inefficiencies encountered by previous work when accelerating hash-based CDC algorithms. Section 4 outlines
VectorCDC’s design while Section 6 details our evaluation efforts on diverse datasets. We discuss related work in Section

7 and conclude our paper in Section 8.

!https://github.com/UWASL/dedup-bench
https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25

Manuscript submitted to ACM

https://github.com/UWASL/dedup-bench
https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 3

Sub-minimum
region

Sub-minimum
region

Incoming Byte

1
1 Chunk Boundary
Sliding !
Window '

(a) Sliding window and rolling hash (b) Minimum chunk sizes and sub-minimum skipping

Fig. 1. Hash-based chunking algorithms

2 Background
Data deduplication consists of four phases [9]:

e Data Chunking: Data is divided into small chunks typically of size 1 — 64KB using a chunking algorithm. All
chunking algorithms have configurable parameters that control the average size of generated chunks.

e Fingerprinting and Comparison: Chunks are hashed using a collision-resistant hashing algorithm such as Mur-
murHash3 [16] or SHA-256 [29] to generate fingerprints. Fingerprints are compared against those previously
seen to identify duplicate chunks.

o Metadata Creation: Metadata, i.e., file recipes required to reconstruct the original data from stored chunks, are
created.

o Metadata and Chunk Storage: Non-duplicate chunks and recipes are saved on the storage medium. Fingerprints

are stored on the fingerprint database and cached in an in-memory index.

Data chunking and fingerprinting are typically the most computationally intensive phases in deduplication [8].
While fingerprinting has been accelerated up to 53X using GPUs [18, 19] and faster hashing algorithms [16, 30], data

chunking acceleration has only received limited attention and is currently the performance bottleneck (§3.1).

2.1 Data Chunking

Data chunking algorithms can generate fixed-size or variable-sized chunks. Dividing the data into fixed-size chunks is
fast, but results in poor space savings on most datasets. This is due to the byte-shifting problem [23], where adding a
single byte causes all subsequent chunks to appear different, despite the data stream largely being unchanged. Thus,
while traditional backup systems such as Venti [31] and OceanStore [32] use fixed-size chunks, modern deduplication
systems employ content-defined chunking (CDC) algorithms [23] to generate variable-sized chunks.

Chunk boundaries in CDC algorithms are derived from the data itself, i.e., they are content-defined. These boundaries
are chosen such that most byte shifts cause them to shift by the corresponding amount, leaving subsequent chunks
unaffected and preserving the ability to detect duplication. Numerous CDC algorithms have been proposed in previous

literature [20-25, 27] and can be broadly classified into hash-based and hashless algorithms [15].

2.1.1 Hash-based algorithms. These algorithms [21-23, 25] slide a fixed-size window over the data. When the hash
value of the window’s contents matches a target mask, they insert a chunk boundary, creating a new data chunk lying
between the current and previous chunk boundaries. Note that these hash-based CDC algorithms are only used during
the Data Chunking phase and do not affect the Fingerprinting and Comparison phase.

Manuscript submitted to ACM

4 Udayashankar et al.

Algorithms such as Rabin-Karp chunking [23] and CRC [26] slide a window over the source data and compute
the hash of the window’s contents using rolling hash algorithms. Figure 1a shows an example of data chunking with
such algorithms. In the Rabin-Karp chunking algorithm [23], a chunk boundary is declared when the lower k bits of
the sliding window’s hash value equals zero. If the current window’s hash value does not meet this condition, the
window is slid by a byte. To minimize the overhead of recomputing the hash value, the new value is calculated as a
function of the old hash value, the incoming byte, and the outgoing byte (Figure 1a), i.e., a rolling hash. This creates
a dependency between adjacent bytes, complicating acceleration efforts with SIMD instructions (§3.2). Additionally,
despite the development of more lightweight rolling hash algorithms such as CRC [26] and Gear-Hash [22], hash-based
chunking remains computationally expensive (§6.2).

Some hash-based algorithms like TTTD [25] and FastCDC [21] use minimum and maximum values to limit the
chunk sizes. To improve chunking throughput, these algorithms skip scanning data lying before the minimum chunk
size at the beginning of each chunk. Figure 1b shows an example of such algorithms with the sub-minimum regions
highlighted using a dashed pattern. To offset the impact of skipping the sub-minimum regions and tighten chunk size
distributions around the average, FastCDC [21] uses dynamically changing masks, i.e., relaxes the boundary detection

condition by reducing k when required. TTTD [25] uses two different boundary masks to do the same.

2.1.2 Hashless algorithms. Hashless CDC algorithms such as AE [20], RAM [24], and MAXP [27] treat bytes as
individual values and use local minima/maxima to identify chunk boundaries. They also slide one or more windows
over the source data but do not use rolling hashes and, as a result, are faster than most hash-based algorithms by 2-3x.

AE. Figure 2a shows an example chunk generated by the Asymmetric Extremum (AE) [20] algorithm. AE has two
modes of operation: AE-Min and AE-Max, depending on whether it uses local minima or maxima; Figure 2a shows
AE-Max. In each chunk, AE-Max tries to find a target byte that is greater than all the bytes before it. Once the target byte
is identified, AE-Max scans a fixed-size window of bytes after the target to identify the maximum-valued byte among
them. If the target byte is greater than this maximum-valued byte, it inserts a chunk boundary after the fixed-size
window, as shown in Figure 2a.

Similarly, AE-Min tries to find a target byte that is less than all the bytes before it. When such a byte is identified,
AE-Min scans a fixed-size window of bytes after the target to identify the minimum-valued byte within. If the target
byte is lesser than this minimum-valued byte, it inserts a chunk boundary after the fixed-size window.

MAXP. Figure 2b shows an example chunk generated by MAXP [27]. MAXP identifies target bytes in the data stream
that are local maxima, i.e., they are greater than a fixed number of bytes before and after them. When such target bytes
are found, chunk boundaries are inserted at their locations, as shown in the figure. Note that MAXP’s window sizes are
typically 70-80% smaller than AE [20] and RAM [24] to generate the same target average chunk size.

MAXP works by sliding two fixed-size windows over the data, tracking the maximum values from both windows.
These windows are located one byte apart, as shown in Figure 2b, and the byte between them is the target byte. When
the target byte’s value is greater than the maximum value from both windows, a chunk boundary is inserted as the
target byte is a local maximum.

RAM. Figure 2c shows an example chunk generated by the Rapid Asymmetric Maximum (RAM) [24] algorithm.
RAM begins by scanning a fixed-size window at the beginning of each chunk to find the maximum valued byte (F1 in
the figure). It then begins scanning at the first byte outside the window, serially comparing these bytes against this
maximum value. A chunk boundary is inserted when the first byte that exceeds or equals the maximum is found, e.g.,
F3 in Figure 2c.

Manuscript submitted to ACM

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 5

Compa%

Maximum

< 1 < » 1 »
Target = _)] ”1 Chunk € > | € >
Byte Fixed-size window | goyndary Fixed-size window 1 Fixed-size window
1 I
(a) AE-Max (b) MAXP

1
- ” 1 Chunk

Fixed-size window 1 Boundary

(c) RAM

Fig. 2. Hashless chunking algorithms

As they do not possess explicit dependencies between adjacent bytes, we argue that hashless algorithms are better

candidates for SIMD acceleration efforts.

2.2 Deduplication Metrics

Previous literature [15, 21, 23, 33] outlines three important metrics for deduplication systems: Space Savings, Chunk

Size Distribution, and Chunking Throughput. We describe these in detail in this section.

2.2.1 Space savings. Space savings [15, 33] is one of the primary metrics used to evaluate deduplication systems in
production. It represents the overall disk space conserved by using the deduplication system, i.e. size of data stored on
disk after deduplication. The space savings achieved are largely dictated by the choice of the data chunking algorithm
and its associated parameters. It is defined as:

Original Data Size — Deduplicated Data Size

S Savi %) = X 100 1
pace Savings (%) Original Data Size W

2.2.2 Chunking throughput. Chunking throughput is defined as the speed at which the deduplication system divides
incoming data into chunks. As CDC algorithms are content-dependent, they need to scan every byte of an incoming
data stream before making content-defined boundary decisions. Their speed depends on their computational complexity.
Hash-based algorithms involve the use of expensive rolling-hash algorithms to determine chunk boundaries (§2.1),

typically resulting in lower throughputs than their hashless counterparts. Chunking throughput is defined as:

Original Data Size

Chunking Throughput = (2

Time taken to generate all chunk boundaries

2.2.3 Chunk size distribution. Content-defined chunking (CDC) algorithms generate variable-sized chunks of a target
average chunk size. They try to ensure that the sizes of generated chunks are as close to the target average as possible.

Manuscript submitted to ACM

6 Udayashankar et al.

However, due to underlying algorithmic characteristics, each algorithm has a unique chunk size distribution pattern.
For instance, FastCDC [21] exhibits two distinct smooth distributions, changing its pattern at the average chunk size.
This is because it switches masks past the target average size and relaxes boundary conditions. On the other hand,
algorithms such as TTTD [25] exhibit a smooth distribution between their minimum and maximum specified chunk
sizes. Chunk size distributions are typically represented using cumulative distribution function (CDF) plots.

Space savings are inversely proportional to the target average chunk size, i.e., the greater the average chunk size, the
lower the space savings achieved in general [11]. This is because the probability of finding duplicate chunks is higher at
smaller chunk sizes. The degree of space savings degradation with increasing chunk size depends on algorithmic and
dataset characteristics.

All chunks generated by CDC algorithms are subsequently hashed using a collision-resistant algorithm [16] to
generate fingerprints, as described above. The set of unique fingerprints observed thus far is stored in a fingerprint
database. New incoming chunks are hashed, and their fingerprints are compared against this database to detect
duplicates. Thus, smaller and more numerous chunks result in a larger database; specifically, the fingerprint database
size is inversely proportional to the chosen average chunk size. A large number of small chunks can negatively impact
system throughput, both due to the increased fingerprint database size and the random data accesses caused by these

chunks. Thus, CDC algorithms in production typically target average chunk sizes between 2KB—64KB.

2.3 Vector Instructions

Vector instructions [34] are special Single-Instruction Multiple-Data (SIMD) instructions supported by most modern
processors. They rely on special vector registers for their operations. These registers come in multiple sizes; depending
on the width of the vector register they use, vector instructions can be classified into different families [34]. The most
common vector register sizes are 128 bits, 256 bits, and 512 bits, i.e., 16, 32, and 64 bytes wide.

Vector instructions support the execution of an operation on multiple pieces of data by packing them into vector
registers; for instance, eight 16-bit values a-h can be densely packed into a 128-bit vector register V5. To add a-h to
eight other values i-p, we can pack i-p into another register V,. We can now add them pairwise with a single vector
addition operation VADD (V1, ;) using Vi and V, as operands, instead of eight separate integer arithmetic operations.

Vector instructions support various arithmetic operations [35], including pairwise addition, subtraction, multiplication,
and maximum/minimum on packed values. Additionally, they support logical operations such as bitwise AND (&)
and bitwise OR (|). They have been previously used to accelerate matrix multiplication [36], sorting [37], multimedia
applications [38], fluid simulations [39], hash tables [40], and relational databases [41]. The supported vector instruction

types and their relative performance vary across CPU manufacturers.

2.3.1 Intel and AMD. Vector instructions on x86 platforms can be classified into three families: SSE-128, AVX-256, and
AVX-512 [34]. SSE-128 instructions use 128-bit registers and have been supported by Intel and AMD processors since
1999 [42] and 2003 [43], respectively. AVX-256 instructions were introduced by Intel and AMD in 2011 [42], and use
256-bit registers. Finally, only a handful of the newest Intel [44] and AMD [45] processors, which have 512-bit wide

vector registers, support AVX-512 instructions.

2.3.2 ARM. ARM processors have supported NEON-128 instructions, an equivalent to SSE-128, since 2011 [46]. Modern
ARM processors also support 256-bit and higher vector widths with the SVE / SVE2 instruction sets, available since
2021 [47]. These two instruction sets differ in the kinds of instructions supported. For instance, NEON-128 does not

support native VMASK operations, which are used to create integer masks by extracting one out of every k bits in a
Manuscript submitted to ACM

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 7

40 m Data Chunking OFingerprinting

30

jéﬂﬁﬂﬂii

SHA1 SHA-256 SHA-512 MD5 MurmurHash3 xxHash3
Fingerprinting Algorithm

Time (Seconds)

Fig. 3. Time taken for Data Chunking vs Fingerprinting while deduplicating randomized data with FastCDC [21] and an 8 KB average
chunk size.

vector register, while SVE / SVE2 does. This can lead to performance differences in applications that need the VMASK
operation [40].

2.3.3 IBM Power. IBM’s Power [48] architecture supports AltiVec / VSX-128 vector instructions [49], an equivalent to
SSE-128, since the 1990s. This instruction set supports equivalents for most SSE instructions but lacks VMASK support.

3 Motivation
3.1 Performance bottlenecks in data deduplication

Although both data chunking and fingerprinting have traditionally been considered the main bottlenecks in deduplication
[8], this has changed with the advent of new hashing algorithms/acceleration methods for fingerprinting. Figure 3 is a
stacked bar plot showing the time taken by the data chunking and fingerprinting phases during deduplication. For
fingerprinting, we use five different collision-resistant hashing algorithms [50-54]. For data chunking, we use FastCDC
[21], the fastest unaccelerated chunking algorithm (§6.2), with an 8 KB average chunk size. We use 30 GB of randomized
data and an Intel Emerald Rapids machine described in §6 for this experiment.

Figure 3 shows that fingerprinting and data chunking take nearly equal time with traditional collision-resistant
hashing algorithms, such as SHA1 [51] and SHA-256 [52]. Fingerprinting takes longer than data chunking with other
algorithms, such as MD5 [50] and SHA-512 [52]. This indicates that both phases used to be the performance bottlenecks
in deduplication, aligning with previous literature [8].

However, recent research [16, 17] has introduced faster hashing algorithms such as MurmurHash3 [53] and xxHash3
[55]. Figure 3 shows that fingerprinting takes significantly lower time than chunking with these new hashing algorithms,
as they are 10 X —15X faster than their counterparts on CPUs. Using GPUs can further accelerate fingerprinting speeds
by up to 53% [18, 19]. Note that the choice of fingerprinting algorithm does not affect deduplication space savings, as
MurmurHash3 and xxHash3 have similar collision resistance properties to other algorithms [56].

Thus, as a result of its computationally intensive nature and position on the critical path, data chunking is the main

performance bottleneck in the deduplication pipeline and needs further optimization.

3.2 Accelerating hash-based algorithms with vector instructions

To address the data chunking bottleneck, SS-CDC [26] proposed using AVX-512 instructions to accelerate hash-based

CDC algorithms. They decouple the rolling hash and boundary detection phases, running the rolling hash on the entire
Manuscript submitted to ACM

8 Udayashankar et al.

File / Data Stream

- Operations
EE23 09DD EEAF

Hash Value Register

Scatter Instruction

Boundary candidate bitmap

Fig. 4. SS-CDC [26]: Accelerating the rolling hash phase

source data to identify boundary candidates in the first phase, and determining boundaries sequentially in the second.
This allows both stages to be independently accelerated with AVX instructions.

Figure 4 shows how SS-CDC [26] accelerates the first rolling hash phase of hash-based CDC algorithms. SS-CDC
uses AVX-512 registers to create multiple rolling-heads, i.e., calculating the rolling hash on bytes from multiple regions
of the file independently and in parallel. Each rolling head maintains its own hash value and independently calculates
the contributions of incoming and outgoing bytes.

To use vector instructions, they first collect the outgoing bytes for each head into a vector register V;. Similarly, they
collect all the incoming bytes into another vector register V2. The hash values for each head are stored in a separate
register V3. SS-CDC removes the contributions of all outgoing bytes from the hash values with a single vector operation
and adds the contributions of all incoming bytes with another. Whenever any of the hash values match the boundary
condition (such as the lower k bits being equal to zero in Rabin-Karp chunking [23]), they mark the current position
as a boundary candidate in a separate bitmap. In the second phase, they scan the bitmap using vector instructions to
determine the actual boundaries among all candidates, taking into account the minimum and maximum chunk sizes.

This approach introduces two problems. First, many hash-based algorithms, such as TTTD and FastCDC, skip
scanning data up to the minimum chunk size to improve throughput (§2.1). Decoupling the rolling hash and boundary
detection phases causes the rolling hash to be run on the entire incoming data stream, nullifying these optimizations.

Second, to load incoming and outgoing bytes from different regions in the file, SS-CDC [26] uses AVX gather
instructions. To populate the candidate bitmap when boundary candidates are discovered, they use scatter instructions.
These scatter and gather instructions are slow [57], limiting performance gains. Finally, scatter instructions are
only available on processors supporting certain instruction sets [35], limiting SS-CDC’s usage to a handful of the newest
Intel and AMD processors (§2.3).

Figure 5 shows the chunking throughput obtained by running SS-CDC accelerated versions of CRC (SS-CRC) and
Gear-based chunking (SS-Gear) [26] against their native unaccelerated counterparts. This experiment used randomized
data, an Intel Emerald Rapids machine described in §6 and AVX-512 instructions. We ran each algorithm with chunk
Manuscript submitted to ACM

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 9

B CRC BSS-CRC OGear ESS-Gear
4

Throughput (GB/s)
N

4KB 8KB 16KB

Fig. 5. SS-CDC [26] throughputs on randomized data with AVX-512 instructions

Vs K. Seq Scan
E1[oalFe] ,
Vi 2 VMAX Vo 3. VMAX

E1[p359] Ril12lF2]) ; pacreq V3 J4p(V4]
/ N /2 Nt / N _/ N

E1|D3|59 |21 |12 |F2}---|AA| A5 |EE |43 | 34 | 59

A
A 4

Fixed-Size Window for Maximum Value Search

Fig. 6. Accelerating Extreme Byte Search

sizes of 4 — 16 KB. SS-CRC achieves 1.2 GB/s, a speedup of 2.58% over CRC. Similarly, SS-Gear achieves 3.3 GB/s, a
speedup of 3.13x over Gear. These small speedups result from the challenges associated with hash-based algorithms
that are described above.

Hashless algorithms do not possess explicit dependencies between adjacent bytes. They treat each byte as an
independent value and use maximum / minimum values from data regions to determine chunk boundaries. VectorCDC

chooses hashless algorithms over their hash-based counterparts as they are better candidates for SIMD acceleration.

4 VectorCDC Design
Hashless CDC algorithms such as AE [20], RAM [24], and MAXP [27] slide windows over the source data to determine

chunk boundaries. We identify two common processing patterns across all hashless CDC algorithms: the Extreme
Byte Search and Range Scan. We accelerate each of these patterns using different vector-based techniques, which are
discussed in detail below.

While we use the AVX-512 instruction set as an example to describe our acceleration techniques in this section,
they can be implemented on any CPU with a vector instruction set supporting VMAX, VCMP and VMASK operations.
SSE-128 and AVX-256 instruction sets [35] fall under this umbrella, as do ARM and IBM processors with NEON-128 [46]
and AltiVec / VSX-128 [48] instructions, respectively. Thus, VectorCDC is compatible with a wide range of processors,

unlike SS-CDC [26], which relies on scatter instructions only available in AVX-512 instruction sets. Finally, while
Manuscript submitted to ACM

10 Udayashankar et al.

Maximum
Value
Vo 6&';’2’&9 —> 3. Mask = 0?
F2|D1|82]
Va 1. Packed Load
F2 | D1 | 82 | A3 | 43 | 66 |------ 12 | 66 | EE | C4 | C4 | B2

A
\ 4

Data Region for Range Scan

Fig. 7. Accelerating Range Scan

other minima/maxima-based hashless algorithms can also be accelerated using VectorCDC, their native versions are

slower [20, 24, 27] than AE, RAM, and MAXP and have been omitted from the rest of our paper.

4.1 Tree-based Extreme Byte Search
Hashless CDC algorithms such as AE [20], RAM [24], and MAXP [27] all consist of a subsequence that identifies the

extreme byte (maximum/minimum) in a fixed-size window. The size of this window depends upon the expected average
chunk size and can be as large as 4 — 8KB. As this subsequence may need to be performed more than once per chunk,
we propose accelerating it using a novel tree-based search approach. Let us consider the search for a maximum value
using AVX-512 instructions (Figure 6). Note that the same method can be used with other vector instruction sets as well
as to find minimum values.

We first divide the fixed-size window into smaller sub-regions, loading all the bytes into AVX-compatible m512i
variables in Step 1. We load these bytes in a packed fashion i.e. each m5121 variable contains 64 adjacent bytes. We then
use vector mm512_max instructions to find the pairwise maximum among packed byte pairs (Step 2). For instance, among
bytes "E1" and "21", byte value "E1" is the maximum. The resulting pairwise maximums are packed into a destination
variable (Vs in the figure).

Step 3 compares these resulting variables V5 and Vg from Step 2 using mm512_max instructions to find the pairwise
maximums. We repeat this process, building a tree of m512i variables until we are left with a single variable V7
containing the maximum-valued 64 bytes from across the entire region. We scan these bytes sequentially in Step K to

determine the maximum valued byte.

4.2 Packed Scanning for Range Scans

Hashless CDC algorithms also consist of a range scan subsequence, where bytes are serially compared against a target
value. We propose to accelerate this scanning process using vector instructions. Let us consider a case where we
compare bytes sequentially to see if they are greater than or equal to a target value (such as in RAM [24]). Figure 7
shows our proposal to accelerate this using packed scanning with AVX-512 instructions. Note that the same methods
are applicable for other vector instruction sets as well.

We first load the target value ("F4" in Figure 7) into an AVX-compatible m5121 variable V. We then pack 64 adjacent
bytes from the scan region into another m512i variable V,. We compare these 2 registers using mm512_cmpge vector

compare instructions, which generate a 64-bit integer mask containing the comparison results. If this mask has a value
Manuscript submitted to ACM

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 11

greater than 0, a chunk boundary exists within the scanned 64 bytes. Its exact position is determined using the mask
value. If the mask equals 0, no boundary exists within the scanned region and we proceed with loading the next 64
bytes into V5 to repeat the process.

Range Scans can be run with one of five comparators: Greater-Than (GT), Lesser-Than (LT), Greater-Than or
Equals (GEQ), Less-Than or Equals (LEQ), and exactly Equals (EQ). Each of these comparators uses a different vector
compare instruction; for instance, the GEQ comparator uses mm512_cmpge instructions while the LEQ comparator uses
mm512_cmple instructions. The same comparators also use different comparison instructions in different instruction
sets; for instance, the GEQ comparator uses mm512_cmpge instructions with the AVX-512 instruction set while it uses
mm256_cmpge with AVX-256.

It is worth noting that our packed scanning approach is compatible with sub-minimum skipping. Unlike SS-CDC’s
approach, chunk boundary detection and insertion can both occur in Range Scans, i.e., whenever a chunk boundary is

detected, the next minimum_chunk_size bytes can be skipped.

4.3 Putting it together: AE-Max, AE-Min, MAXP, and RAM

RAM [24] first scans a fixed-size window at the beginning of the chunk to find a maximum value (Figure 2c). After
this, it inserts a chunk boundary at the first byte outside the window, which is at least as large as the maximum valued
byte (§2.1). With VectorCDC, we accelerate RAM as a combination of an Extreme Byte Search to find a maximum value,
followed by a Range Scan with the GEQ comparator that compares this maximum value against bytes until a chunk
boundary is found.

AE-Max [20] scans for a byte larger than all the bytes before it i.e., a target byte (Figure 2a). Once found, a fixed-size
window after this byte is scanned to determine the maximum valued byte within. If the target byte is larger than the
maximum valued byte, a chunk boundary is inserted; otherwise, scanning continues for a new target byte (§2.1). With
VectorCDC, we accelerate AE-Max as a combination of multiple Range Scans with the GT comparator to find target
bytes, each followed by a single Extreme Byte Search for a maximum value.

AE-Min [20] scans for a byte with lesser value than all those before it (§2.1). Once found, a fixed-size window after
this byte is scanned to determine the minimum value within. If the target byte has a lesser value than the minimum
valued byte, a chunk boundary is inserted; otherwise, scanning continues for a new target byte. Similar to AE-Max, we
accelerate AE-Min as a combination of multiple Range Scans with the LT comparator to find target bytes, each followed
by a single Extreme Byte Search for a minimum value.

Finally, MAXP [27] scans for a target local maxima that is exactly centered between two fixed-size windows (Figure
2b). A chunk boundary is inserted right after such a byte is found (§2.1). Thus, each chunk in MAXP can be represented
as a combination of multiple Range Scans with the GT comparator, each followed by two Extreme Byte Searches for

maximum values.

5 Implementation

We accelerate AE [20], MAXP [27], and RAM [24] using VectorCDC with 3000 lines of C++ code. We implemented
SSE-128, AVX-256, AVX-512, NEON-128, and VSX-128 versions of all algorithms. We also implemented Extreme Byte
Searches for minima and maxima, as well as Range Scan functionalities with the GT, GEQ, LT, LEQ, and EQ comparators

on all five vector instruction sets. We have made our code publicly available with DedupBench? [15].

3https://github.com/UWASL/dedup-bench
Manuscript submitted to ACM

https://github.com/UWASL/dedup-bench

12 Udayashankar et al.

CPU/CPUFamily SSE-128 AVX-256 AVX-512 NEON-128 VSX-128

Intel Emerald Rapids v v v - -
Intel Skylake v v v - -
AMD EPYC Rome v v - - -
ARM v8 Atlas - - - Vs -
IBM Power 8 - - - - v

Table 1. Vector instruction sets supported by the different machines in our testbed.

Note that while ARM processors support VCMP and VMAX operations, they lack native support for VMASK
instructions, which are used during range scans to generate a single mask containing the comparison results. This
is a common issue encountered by ARM developers trying to port x86 code [58]. We chose an efficient alternative
implementation [58] to work around the lack of native VMASK support. However, this alternative implementation uses
multiple slow NEON-128 instructions, such as vshrn and vreinterpretq, as opposed to a single x86 mm_movemask
instruction. As shown in §6.4, this causes accelerated algorithms to achieve lower speedups on ARM CPUs compared to
Intel and AMD.

IBM processors also support VCMP and VMAX operations, but lack native VMASK support. However, the same
functionality can be achieved using one vec_bperm and two vec_extract instructions. As these instructions are
relatively inexpensive, they are an efficient alternative to VMASK. As shown in §6.4, this allows IBM processors to

achieve speedups equivalent to or greater than Intel and AMD processors when using VectorCDC.

6 Evaluation

In this section, we evaluate VectorCDC against the state-of-the-art CDC algorithms.
Testbed. We run all our experiments using machines from the Cloudlab [59] platform. We pick five machines with
diverse vector instruction set support; Table 1 shows the vector instruction sets supported by each machine. The details

of each machine are as follows:
o Intel Emerald Rapids: We use a c6620 machine from CloudLab Utah, which has a 28-core Intel Xeon Gold 5512U

with hyperthreading at 2.1 GHz, 128 GB of RAM, and one Intel NIC each of 25 GBps and 100 GBps. It supports
the SSE-128, AVX-256, and AVX-512 vector instruction sets.

Intel Skylake: We use a c¢240g5 machine from CloudLab Wisconsin, which has two 10-core Intel Xeon Silver 4114
CPUs with hyperthreading at 2.2 GHz, 192 GB of RAM, one Mellanox 25 GBps NIC, and one onboard Intel 1
GBps NIC. It supports the SSE-128, AVX-256, and AVX-512 vector instruction sets.

AMD EPYC Rome: We use a ¢6525-25g machine from CloudLab Utah, which has a 16-core AMD 7302P CPU
with hyperthreading at 3.0 GHz, 128 GB of RAM, and two Mellanox 25 GBps NICs. It supports the SSE-128 and

AVX-256 vector instruction sets.

ARM v8 Atlas: We use a m400 machine from CloudLab Utah, which has an 8-core ARM Cortex A-57 CPU at 2.4
GHz, 64 GB of RAM, and a 10 GBps Mellanox NIC. It supports the NEON-128 vector instruction set.

e IBM Power 8: We use an ibm8335 machine from CloudLab Clemson, which has dual 10-core IBM Power8NVL
CPUs at 2.86 GHz with 8 hardware threads per core, 256 GB of RAM, and a 10 GBps Broadcom Xtreme II NIC. It

supports the VSX-128 vector instruction set.
Manuscript submitted to ACM

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 13

While some ARM CPUs released after 2022 support higher vector widths with SVE instructions (§2.3), we could
not obtain such a machine for our experiments. Note that all our runs are on the Intel Emerald Rapids machine unless
otherwise specified. Our throughput results are the averages of 5 runs, and the standard deviation was less than 5%.

Alternatives. We evaluate the following hash-based CDC algorithms:

o CRC: Native (unaccelerated) version of the CRC-32 chunking algorithm from SS-CDC [26].
e FCDC: Native version of FastCDC [21].

e Gear: Native version of the Gear-hash based chunking algorithm [22].

e RC:Rabin’s chunking algorithm from LBFS [23].

e SS-CRC: AVX-512 version of CRC accelerated using SS-CDC [26].

o S5S5-Gear: AVX-512 version of Gear accelerated using SS-CDC [26].

e TTTD: Two-Threshold Two-Divisor algorithm [25].

We also evaluate the following hashless CDC algorithms:

e AE: Native version of the Asymmetric Extremum algorithm [20]. We evaluate both AE-Max and AE-Min.
o MAXP: Native version of the MAXP algorithm [27].

e RAM: The native Rapid Asymmetric Maximum [24] algorithm.

o VAE: Accelerated versions of AE-Max and AE-Min with VectorCDC.

o VMAXP: Accelerated versions of MAXP with VectorCDC.

e VRAM: Accelerated versions of RAM with VectorCDC.

Note that for each hashless algorithm accelerated with VectorCDC, we evaluate their SSE-128, AVX-256, AVX-512,
NEON-128, and VSX-128 versions on supporting CPU platforms from our testbed (Table 1).

Datasets. We use 10 diverse datasets to evaluate VectorCDC; Table 2 shows their details. The datasets represent
diverse workloads such as VM backups, database and map backups, web snapshots, and source code. Some datasets,
such as FLOW and WIKI, are similar to those used by previous studies [73]. We have publicly released the DEB dataset *
[28].

We note that the selected datasets have diverse characteristics. They have varying sizes, ranging from 1 GB for WIKI
to 981 GB for MAPS. They have different file counts; datasets such as MAPS and NEWS consist of a few large files, while
others, such as FLOW and KUBE, consist of a large number of small files. We include files with varying formats, such as
TAR [66], VMDK / OVA [74], OSM [75], text files, and binary files across these datasets for comprehensive coverage.

Finally, Table 2 shows the space savings achieved by using fixed-size chunking (XC) and the median of those achieved
by CDC algorithms (Median CDC) on these datasets with 8KB chunks. By comparing XC against Median CDC, we
note that the datasets possess varying degrees of byte-shifting. For instance, XC achieves a space savings of 37.39%
on the TPCC dataset while CDC algorithms achieve a median of 86.68%. On the other hand, XC achieves 90.69% on
FLOW while CDC algorithms achieve a median of 91.98%. Two of our datasets, MAPS and WIKI, possess a large degree of
byte-shifting, causing an extreme difference in space savings between XC and the median achieved by CDC algorithms.

Metrics. We evaluate the space savings, chunk size distribution, and chunking throughput achieved by each
alternative on all the described datasets. In addition, we examine VectorCDC’s performance across different vector
instruction sets.

4https://www.kaggle.com/datasets/srecharshau/vm-deb-fast25

Manuscript submitted to ACM

https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25

14 Udayashankar et al.

6.1 Space Savings and Chunk Size Distributions

Figures 8a - 8j show the space savings achieved by all alternatives with 8KB chunks across datasets. We omit the results

for other chunk sizes as the trends were similar.

6.1.1 Hash-based vs Hashless. Hash-based algorithms exhibit space savings values close to each other across datasets.
The best among the hashless algorithms (AE-Max, AE-Min, MAXP, and RAM) achieves slightly lower space savings
than the best hash-based algorithm on some datasets, such as DEB and NEWS (Figures 8a and 8f). On the other hand, the
best hashless algorithm outperforms all hash-based algorithms on other datasets, such as LNX and RDS (Figures 8e and
8g). Overall, the best hashless algorithms achieve space savings values within 6% of the best hash-based ones across all
datasets and chunk sizes.

The only exception to this is MAPS (Figure 8j), where hashless algorithms perform worse than hash-based ones. AE-
Max, the best performing hashless algorithm, achieves 11% less space savings than CRC, its best hash-based counterpart.
This suggests that there are some specific datasets in which hash-based algorithms are the optimal choice. However, in

most cases, hashless algorithms remain competitive with their hash-based counterparts for data deduplication.

6.1.2 Hashless algorithm comparison. The best-performing hashless algorithm depends on the dataset’s characteristics
and the average chunk size. For instance, RAM achieves the highest space savings on DEB (Figure 8a) while MAXP
does so on TPCC (Figure 8h). This shows that accelerating all hashless algorithms is important, as the optimal algorithm
depends on the dataset’s characteristics.

AE-Max either performs equivalently to or outperforms AE-Min on all datasets, except DEB and TPCC (Figures 8a and
8h). In addition, note that AE-Min is adversely affected by the byte-shifting pattern in MAPS, causing it to achieve only
8.89% in space savings while other CDC algorithms achieve 58%-78%.

Dataset ‘ Size ‘ Files Dataset Information ‘ XC Median CDC ‘
Debian [60] VM Images obtained from
DEB 40 GB 65 18.98% 34.64%
the VMware Marketplace [61]

DEV 230 GB 100 Nightly backups of a Rust [62] build server 83.17% 98.05%
FLOW 8 GB | 630341 Source files for 25 versions of TensorFlow [63] 90.69% 91.98%
KUBE | 1.5GB | 117344 Source files for 5 versions of Kubernetes [64] 64.52% 69.42%

LNX 65 GB 160 Linux kernel distributions [65] in TAR format [66] 19.87% 45.62%

OpenStreetMap [67] backups of Canada
MAPS | 981 GB 15 0.10% 68.57%

extracted using GeoFabrik [68]

Complete snapshots of a news website across

NEWS | 478 GB 47 38.95% 73.80%
47 consecutive days in TAR [66] format
RDS 122 GB 100 Redis [69] snapshots between redis-benchmark runs | 33.54% 92.94%
TPCC | 106 GB 25 25 snapshots of a MySQL [70] VM running TPC-C [71] | 37.39% 86.64%
Snapshots of the largest Wikipedia article [72] across
WIKI 1 GB 3134 1.31% 72.37%

multiple days, chosen for extreme versioning.

Table 2. Dataset Information. Note that XC represents the space savings achieved by fixed-size chunking with 8KB chunks while
Median CDC is the median space savings achieved by CDC algorithms with an 8KB average chunk size.

Manuscript submitted to ACM

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 15

B CRC mFCDC OGEAR @RC O TTTD m AE-Max O AE-Min @ MAXP @ RAM

99.0% 96.0%
40.0% "
37 00 £96.0% £93.0%
3 30.0% i & 93.0% & 90.0%
. [
o] 3 &
E31.0% 390.0% S-87.0%
28.0% 87.0% 84.0%
Hash-based : Hashless Hash-based : Hashless
(a) DEB (b) DEV (c) FLOW
7>0% 80.0%
” w 52.0% o
©72.0% 5, 2 77 0%
s £ 49.0% g ' ?
< 69:0% [] % 46.0% 3 74.0%
S o W
3.66.0% H S 43.0% é 71.0%
63.0% 40.0% 68.0% i
Hash-based Hashless Hash-based Hashless Hash-based : Hashless
(d) KUBE (e) LNX (F) NEWS
95.0% H _ 89.0% 78.0%
8 90.0% & 86.0% £75.0%
2 2 8309 2 72.0%
(] [
3 80.0% g 80.0% & 69.0%
& i A & :
75.0% + 77.0% 66.0% +
Hash-based : Hashless Hash-based : Hashless Hash-based : Hashless
(g) RDS (h) TPCC (i) WIKI
78.0%
273.0%
S
v 68.0%
o]
3 63.0%
wv
58.0%
Hashless

(j) MAPS

Fig. 8. Space Savings with 8KB chunks. Note that the legend entries are in the same order as the plot bars.

Finally, while MAXP achieves higher space savings than RAM and both AE variants on many datasets, the space

savings difference between it and the next best hashless algorithm is small.

6.1.3 Vector-acceleration Impact. Note that SS-CRC, SS-Gear, VAE, VMAXP, and VRAM achieve the same space savings
as their native counterparts, i.e., vector-acceleration does not impact the space savings achieved by CDC algorithms. This
aligns with the results previously observed for SS-CRC and SS-GEAR [26]. We omit these results from Figure 8 for
clarity.

6.1.4 Chunk Size Distribution. To ensure the correctness of our vector-accelerated implementations, we compared
their chunk size distributions to those of their native counterparts and verified that they were equal. Figure 9 shows the

chunk size distributions exhibited by AE-Max, AE-Min, MAXP, and RAM compared against their AVX-512 versions
Manuscript submitted to ACM

Udayashankar et al.

16
—— AE-Max VAE-Max — AE-Min VAE-Min
1.0 P 1.0 P
I ’
0.8 [} 0.81 [
@ ' o '
20.6 ' £0.61 '
S | g |
504 ' o 0.41 |
(=1 " (a1 1
0.2 ' 0.2 |
|]
0.0 0.0 :
OKB 3KB 6KB 9KB 12KB 15KB 18KB 3KB 6KB 9KB 12KB 15KB 18KB 21KB
Chunk Size Chunk Size
(a) AE-Max / VAE-Max (b) AE-Min /| VAE-Min
— MAXP VMAXP =— RAM VRAM
1.0 o 1.0 Y
e ‘
0.8 7 0.8] '
Q ’ Q]
£0.6 / 20.6 {
g / g '
o 0.4 / o 0.44 1
o / a !
021 0.2 |
/
0.0 0.0
OKB 5KB 10KB 15KB 20KB 25KB 30KB 2KB 4KB 6KB 8KB 10KB 12KB 14KB
Chunk Size Chunk Size

(c) MAXP | VMAXP (d) RAM / VRAM

Fig. 9. Chunk size distribution CDFs of hashless algorithms and their AVX-512 accelerated versions on TPCC with an 8KB average

chunk size

accelerated with VectorCDC. Note that each figure is a cumulative frequency (CDF) [76] plot. We use a target average
chunk size of 8KB and the TPCC dataset for this experiment. The results for other datasets and chunk sizes were similar

and have been omitted for clarity.
Figure 9 shows that the AVX-512 versions of each algorithm exhibit the same chunk size distribution as their

unaccelerated counterparts. For instance, Figure 9d shows that RAM and VRAM have identical chunk size distributions.

Thus, VectorCDC does not affect the chunks generated by the hashless algorithms it accelerates.

6.2 Chunking Throughput
Figures 10a and 10b show the throughput achieved by all algorithms on DEB and DEV with a chunk size of 8KB. Note
that vector-accelerated algorithms are shown with patterned bars and that we have cropped the y-axis to 5 GB/s to

avoid the figures being skewed by VRAM. The results on other datasets and chunk sizes had similar trends and have

been omitted for clarity.

Manuscript submitted to ACM

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 17

ORC goTTTD m CRC SS-CRC OGEAR ESS-GEAR@mFCDC mAE-Max
VAE-Max @ AE-Min VAE-Min @MAXP EVMAXP BRAM VRAM
H 5 é " d
o 2 2N 2 2 SN 3
@4 % SR © g4 N Y
[} 2] ™M a = ; <
53 12 o f & 23
a 4% <
52 172 £ 2
2 7 g .
£1 = . H
0 Hash-based ! ashl 0 COMARL
ahased e Algorithms Hashless Hash-based cDC Algorithms ~Hashless
(a) DEB (b) DEV
4 32
@ 3 2 24
3 5
%2 216
S (=2}
° >
=1 2 8
= [=
0 0
DEB Dataset DEV DEB Dataset DEV
(c) Hash-based algorithms with SS-CDC [26] (d) Hashless algorithms with VectorCDC

Fig. 10. Chunking Throughput with AVX-512 instructions and 8KB chunks. Note that the legend entries are in the same order as the
plot bars from Figures 10a and 10b.

6.2.1 Throughput Comparison. Figures 10a and 10b show that hashless algorithms accelerated with VectorCDC achieve
the highest throughputs among all CDC algorithms. VRAM, the fastest accelerated hashless algorithm, achieves 8.35x and
15.3% higher throughput than SS-GEAR and FastCDC, the fastest accelerated and unaccelerated hash-based algorithms,
respectively.

Among unaccelerated hash-based algorithms, FastCDC [21], Gear [22], and CRC [26] are the fastest, achieving 1.95
GB/s, 1.05 GB/s, and 0.48 GB/s, respectively. We accelerated each of these using SS-CDC [26]; SS-GEAR achieves 3.57
GB/s and SS-CRC achieves 1.17 GB/s. We discuss accelerating FastCDC in §6.2.2.

The unaccelerated hashless algorithms AE-Max [20], AE-Min [20], MAXP [27], and RAM [24] come in at 1.5 GB/s-1.7
GB/s, faster than most of their hash-based counterparts. Their VectorCDC-accelerated versions, VAE-Max, VAE-Min,
VMAXP, and VRAM, achieve 6.5 GB/s—29.9 GB/s. VRAM, the fastest accelerated hashless algorithm, is 8.35% and 26.2x
faster than SS-GEAR and SS-CRC respectively. While the throughputs of all algorithms slightly vary across datasets, the

trends remain the same.

6.2.2 Accelerating FastCDC.. We did not observe any speedup when accelerating FastCDC [21] with SS-CDC [26].
One of the main throughput optimizations used by FastCDC is sub-minimum skipping (§2.1). However, as noted in
§3.2, decoupling the rolling-hash phase from the boundary identification phase eliminates the throughput benefits of
minimum chunk size skipping, nullifying any speedup provided by vector-acceleration. VAE-Max, VAE-Min, VMAXP
and VRAM achieve 4.6%, 4.46X, 4.76X, and 15.3% higher throughput than FastCDC respectively.

Manuscript submitted to ACM

18 Udayashankar et al.

30 m Data Chunking OFingerprinting
25

20

15

10

; E m

0 el

FastCDC AE-Min AE-Max MAXP ~ RAM VAE-Min VAE-Max VMAXP VRAM
CDC Algorithm

Time (Seconds)

Fig. 11. Time taken for Data Chunking vs Fingerprinting on DEB with an 8 KB average chunk size, xxHash3 for fingerprinting, and
AVX-512 instructions for acceleration.

6.2.3 Vector-acceleration benefits. Figures 10c and 10d compare the throughput benefits of accelerating hash-based
and hashless algorithms with AVX-512 accelerated algorithms on DEB and DEV.

Accelerating hash-based algorithms (Figure 10c) using SS-CDC achieves a speedup of 2.45 — 3.32X%. For instance, on
DEB, SS-CRC exhibits a throughput of 1.2 GB/s over CRC at 0.46 GB/s, i.e., a 2.45X speedup. Similarly, SS-GEAR achieves
3.57 GB/s over GEAR at 1.07 GB/s, i.e., a 3.32X speedup.

On the other hand, the hashless algorithms VAE-Max, VAE-Min, VMAXP, and VRAM achieve speedups of 5.1X,
4.43X%, 5.36X%, and 17.69X over their respective native counterparts. Thus, vector instructions can be leveraged far more
efficiently for hashless algorithms, proving that hashless algorithms are better candidates for vector-acceleration than their
hash-based counterparts.

Figure 10d shows that VRAM achieves higher throughputs than VAE-Max, VAE-Min, and VMAXP. This is because
VAE requires multiple iterations of Range Scan per chunk, each followed by an Extreme Byte Search, while VRAM only
requires one iteration of each (§4). Similarly, VMAXP requires multiple Range Scans, each followed by two Extreme Byte
Searches. For a given target average chunk size, the size of the Extreme Byte Search regions in MAXP is 70 — 80% smaller
than the search region in AE. This allows VMAXP to achieve speeds similar to VAE-Max and VAE-Min despite needing
an extra Extreme Byte Search.

Thus, RAM is inherently more vector-friendly than AE and MAXP. However, note that VAE and VMAXP are still faster
than every other CDC algorithm.

6.2.4 Deduplication performance bottlenecks. Figure 11 shows the time taken by the chunking and hashing phases in
the deduplication pipeline on DEB with an 8KB average chunk size. We omit the results for other datasets as they were
similar. We used xxHash3, the fastest hashing algorithm (§3.1) for fingerprinting and ran this experiment on the Intel
Emerald Rapids machine. We use AVX-512 versions of hashless CDC algorithms, accelerated with VectorCDC. Note
that the times in Figure 3 and Figure 11 differ due to the differing sizes and dataset characteristics between the random
dataset used in §3 and DEB.

For unaccelerated CDC algorithms, Figure 11 shows similar results to those obtained in Figure 3 with random data.
Data chunking takes significantly longer than fingerprinting with these algorithms. On the other hand, VAE-Min,
VAE-Max, VMAXP, and VRAM show data chunking times similar to or lower than fingerprinting. For instance, with

VRAM, data chunking takes 1.29 seconds while fingerprinting takes 2.27 seconds.
Manuscript submitted to ACM

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 19

This shows that VectorCDC effectively alleviates the data chunking bottleneck in the deduplication pipeline.

6.3 Throughput breakdown - Extreme Byte Search vs Range Scan

The throughput impact of each processing pattern depends on algorithmic and dataset characteristics. Figure 12 shows
the individual impact of accelerating Extreme Byte Search and Range Scan in VRAM on DEB and LNX with an 8KB chunk
size. VRAM-EBS represents RAM running with only Extreme Byte Search acceleration, while VRAM-512 uses both
accelerated patterns. Similarly, VMAXP-EBS represents MAXP running with only Extreme Byte Search acceleration,
while VMAXP-512 uses both accelerated patterns. We use the DEB and LNX datasets for this experiment.

Figure 12a shows that on DEB, VRAM-EBS achieves a throughput of 18.5 GB/s compared to RAM at 1.7 GB/s.
Accelerating Range Scan provides an additional speedup of 11.4 GB/s. On the other hand on LNX, VRAM-EBS only
achieves 2.7 GB/s compared to RAM at 2 GB/s/. Accelerating Range Scan provides an additional speedup of 27.6 GB/s.
Thus, each pattern has a balanced impact on VRAM’s throughput on DEB while Range Scan majorly contributes to
throughput on LNX, showing that dataset characteristics impact the throughput breakdown.

The throughput breakdown also varies across algorithms; for instance, accelerating Extreme Byte Searches has
differing impacts on the throughputs of RAM and MAXP. While Figure 12a shows that VRAM-EBS achieves significantly
higher throughput than RAM on DEB, Figure 12b shows that VMAXP-EBS only achieves small speedups over MAXP, i.e.,
Range Scan acceleration contributes more to throughput on VMAXP than it does on VRAM.

These results are directly tied to the number of bytes processed by the algorithms on both datasets. Figure 13 shows
the percentage shares of bytes processed by Extreme Byte Searches and Range Scans, for all hashless algorithms on DEB
and LNX. As seen in Figure 13a, the percentage shares differ across algorithms. For instance, RAM processes 96.70%
and 3.30% of bytes on DEB with Extreme Byte Search and Range Scan, respectively. On the other hand, MAXP processes
10.26% and 89.74% of bytes with Extreme Byte Search and Range Scan, respectively. Additionally, this percentage varies
across datasets, as seen by the differences between Figures 13a and 13b.

Thus, accelerating both phases using vector instructions is crucial to performance, as the impact of each phase depends

on dataset and algorithmic characteristics.

6.4 VectorCDC across different vector instruction sets

SS-CDC [26] requires CPUs with vector instruction sets supporting scatter/gather instructions (§3.2). Such CPUs

are present only in a small percentage of datacenter nodes today. However, almost all datacenter machines that are

BRAM EVRAM-EBS @VRAM-512 1o IVAXP EVMAXP-EBS @VMAXP-512
2 2
))
H H
& 5
: :
= =
DEB LNX DEB LNX
(a) VRAM (b) VMAXP

Fig. 12. Throughput Breakdown with AVX-512 instructions

Manuscript submitted to ACM

20 Udayashankar et al.

W Extreme Byte Search E Range Scan

100.00% 100.00%
3 7
2 75.00% 2 75.00%
g g
£ 50.00% £ 50.00%
8 g
£ 25.00% 2 25.00%
2]
0.00% 0.00%
AE-Max AE-Min MAXP ~ RAM AE-Max AE-Min MAXP RAM
(a) DEB (b) LNX

Fig. 13. Percentage share of bytes processed using Extreme Byte Search and Range Scan by hashless CDC algorithms on DEB and LNX

currently deployed support other vector instruction sets without this capability, such as SSE-128, AVX-256, NEON-128,
and VSX-128 (§2.3).

While §4 discusses VectorCDC’s design using AVX-512 instructions, the same methods can be applied to any vector
instruction set that supports VCMP, VMAX, and VMASK operations. In this section, we evaluate VectorCDC’s performance
with other such vector instruction sets. Figure 14 shows the throughput achieved by AE-Max, AE-Min, MAXP, and RAM
accelerated using VectorCDC with SSE-128, AVX-256, NEON-128, and VSX-128 instruction sets. We ran this experiment
using the DEB dataset and an average chunk size of 8 KB.

In summary, VectorCDC is compatible with a large range of platforms that support vector instructions while retaining
its benefits over hash-based algorithms, unlike SS-CDC [26] which requires CPUs with scatter/gather instruction
support. While VectorCDC’s speedups depend on the underlying CPU’s vector instruction support, it remains effective

on platforms alternative to x86, such as ARM and IBM Power.

6.4.1 AMD EPYC Rome. Figure 14a shows the throughputs achieved by hashless algorithms accelerated with VectorCDC
on an AMD EPYC Rome machine. As shown in Table 1, the AMD machine only supports SSE-128 and AVX-256
instructions. All four hashless algorithms in Figure 14a show speedups over their native versions with both instruction
sets. For instance, AE-Max achieves 2.12x and 3.43X speedups with SSE-128 and AVX-256 instructions, respectively.
Similar to the results in §6.2 with AVX-512 instructions, RAM achieves the highest throughput of all algorithms with
both SSE-128 and AVX-256 instructions.

6.4.2 Intel Emerald Rapids and Skylake. Figures 14b and 14c show the throughputs achieved by hashless algorithms
accelerated with VectorCDC on Intel Emerald Rapids and Skylake machines. As shown in Table 1, these machines
support SSE-128, AVX-256, and AVX-512 instructions. All four hashless algorithms in Figures 14b and 14c achieve
speedups over their unaccelerated versions with all instruction sets. For instance, in Figure 14c, AE-Max achieves 2.29X,
4.91X%, and 6.71x speedups with SSE-128, AVX-256, and AVX-512 instructions, respectively. Similar to the results in §6.2
with AVX-512 instructions, RAM achieves the highest throughput of all algorithms with both SSE-128 and AVX-256
instructions.

On both platforms, all algorithms also benefit from increasing vector widths; that is, higher vector widths lead to
higher throughput. The only exception is MAXP, which does not gain as much as the other algorithms with AVX-512
instructions over AVX-256. This is related to the small window sizes used by MAXP for its Extreme Byte Search phases,

Manuscript submitted to ACM

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 21

@ Unaccelerated B SSE-128 EAVX-256 AAVX-512 EINEON-128 @1 VSX-128

. 32.00 % 32.00
g =
B 24.00 £ 24.00
- =}
2 16.00 £16.00
= [®)]
S 800 8 800 7]
= 0.00 T 0.00 L gﬁﬁ]
AE-Max AE-Min MAXP RAM AE-Max AE-Min MAXP
(a) AMD EPYC Rome (b) Intel Emerald Rapids
—.32.00 = 4.00
&5 &
3 24.00 Q 3.00
2.16.00 2200
= =
3 8.00 © 1.00
E =
= 0.00 - 0.00 = [l
AE-Max AE-Min MAXP RAM AE-Max AE-Min MAXP
(c) Intel Skylake (d) ARM v8 Atlas
-10.00
&
<] 8.00
5 6.00
£
o 4.00
S 2.00
< s 2 %%
“ooo Lmll =l el

AE-Max AE-Min MAX RAM

(e) IBM Power 8

Fig. 14. Accelerating hashless algorithms with VectorCDC across processor architectures, on DEB at an 8KB average chunk size. Note
the different y-axis scale on Figures 14d and 14e.

which do not benefit from high vector widths. However, MAXP still achieves 4.7x and 5.39x speedups with AVX-512

instructions over its unaccelerated version, on the Skylake and Emerald Rapids machines, respectively.

6.4.3 ARM v8 Atlas. Figure 14d shows the throughputs achieved by hashless algorithms accelerated with VectorCDC
on an ARM v8 Atlas machine. As shown in Table 1, the machine only supports NEON-128 instructions, an ARM
equivalent to SSE-128. While the instruction set supports VMAX and VCMP operations, it lacks native support for
VMASK operations (§5). RAM achieves the highest throughput among all accelerated hashless algorithms at 2.91 GB/s.

All hashless algorithms achieve lower speedups on ARM with NEON-128 instructions, when compared to SSE-128
instructions on Intel and AMD machines. AE-Max and AE-Min are especially affected, achieving only 1.08X and 1.05%
speedups, i.e. 8% and 5% gains with NEON-128 over their unaccelerated versions. This is largely due to the lack of
native VMASK support, which affects Range Scans. While our implementation uses an alternative method to achieve
the same functionality, it uses four NEON-128 instructions instead of a single SSE-128 VMASK instruction.

Manuscript submitted to ACM

22 Udayashankar et al.

However, MAXP and RAM still achieve 1.93% and 5.32x speedups, respectively, showing that VectorCDC remains
beneficial on ARM platforms with NEON-128 support. Note that these numbers are expected to improve in ARM
platforms supporting SVE/SVE2 instructions [47], as they offer native VMASK support. However, as we could not obtain

such a platform for our evaluation, we leave a detailed SVE/SVE2 performance review as future work.

6.4.4 IBM Power 8. Figure 14e shows the throughputs achieved by hashless algorithms accelerated with VectorCDC
on an IBM Power 8 machine. As shown in Table 1, this machine only supports VSX-128 instructions, an IBM equivalent
to SSE-128. This instruction set lacks support for native VMASK operations as well (§5). RAM achieves the highest
throughput among all accelerated hashless algorithms, at 8.54 GB/s.

Unlike ARM, all hashless algorithms exhibit considerable speedups on IBM Power 8 with VectorCDC. AE-Max and
AE-Min achieve speedups of 2.92x and 2.85x respectively. MAXP and RAM achieve speedups of 7.93x and 20.35x
respectively. Furthermore, all hashless algorithms accelerated with VSX-128 instructions achieve speedups equivalent
to or greater than their counterparts accelerated with SSE-128 on Intel and AMD machines. For instance, RAM achieves
a speedup of 20.35x with VSX-128 on IBM Power 8 while it achieves a speedup of 7.49% and 9.94x with SSE-128 on
Intel Emerald Rapids and AMD EPYC Rome, respectively.

This is because, despite the lack of native VMASK instruction support, the alternative implementation using

vec_bpermq is efficient and uses just two fast VSX-128 instructions.

7 Related Work

7.0.1 Chunking optimizations. Many efforts have been made to optimize data chunking. MUCH [77] and P-Dedupe [78]
use multiple threads to accelerate chunking. RapidCDC [79] sometimes skips data chunking by predicting the next
chunk boundary based on historical data, but requires maintaining additional metadata. Bimodal Chunking [80] initially
splits the data into large chunks, and then divides duplicate adjacent chunks into smaller ones, to enhance space savings.
VectorCDC is compatible with all of these approaches, as they build on top of existing CDC algorithms.

Previous work [81] which analyzes the characteristics of chunks generated by CDC algorithms, is orthogonal to

VectorCDC, as vector acceleration does not affect generated chunks.

7.0.2 Deduplication optimizations. Several other efforts exist to optimize the other phases of the deduplication pipeline.
StoreGPU [19] and GPU-Dedup [18] accelerate chunk hash computation using GPUs. SiLo [82], Sparse Indexing [83]
and Extreme Binning [84] optimize hash indexing. HYDRAStor [85] is a distributed deduplication system that focuses
on data placement. Several studies incorporate delta compression after deduplication to further compress similar but

non-duplicate chunks [86-88]. These efforts are orthogonal to ours as we accelerate the data chunking phase.

7.0.3 Accelerating other storage systems. Vector instructions have been widely used to accelerate other storage systems.
MinervaFS [89] accelerates the computation of transform and basis functions in generalized deduplication with AVX
instructions. ICID [90] records memory-copy operations in a B-Tree for fine-grained deduplication, accelerating tree
searches with AVX instructions. AVX-512 conflict detection instructions have been used to accelerate lightweight data
compression algorithms [91]. Numerous works attempt to accelerate collision-resistant hashing algorithms used across
storage systems with vector instructions [92, 93]. These efforts are orthogonal to ours as we focus on using vector

instructions to accelerate CDC algorithms for block-level deduplication.

7.0.4 Secure deduplication systems. Several efforts build end-to-end deduplication systems for encrypted data [94].

They mainly target encryption schemes [95, 96] for the underlying data or focus on reducing attacks on the system
Manuscript submitted to ACM

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 23

[97, 98]. Some target specific applications, such as distributing encrypted docker images [99] and encrypted videos
[100]. As all of these efforts layer encryption atop existing data chunking algorithms, VectorCDC is compatible with all

these approaches.

8 Conclusion

We present VectorCDC, a methodology for accelerating content-defined chunking using vector instructions. VectorCDC
avoids the pitfalls of previous work that accelerates CDC algorithms by choosing hashless CDC instead. VectorCDC
accelerates these algorithms using novel tree-based search and packed scanning methods. Our evaluation shows that
VectorCDC achieves 8.35x-26.2X higher throughput than existing AVX-based CDC techniques. We have made our code
publicly available by integrating it with DedupBench [15], and hosted one of our datasets on Kaggle [28].

Acknowledgments

We thank the anonymous USENIX FAST 2025 and ACM Transactions on Storage reviewers for their feedback. We thank
Lori Paniak for his technical assistance throughout the project, and Mu’'men Al-Jarah for his feedback on an earlier
version of this work. The research team was supported by grants from the National Cybersecurity Consortium (NCC),
Natural Sciences and Engineering Research Council of Canada (NSERC), and the Ontario Research Fund’s Research
Excellence Program (ALLRP-561423-20, RGPIN-2025-03332, and ORF-RE012-051). The team was also supported by
research grants from Acronis, Oracle Research Labs, and Rogers Communications. Sreeharsha is supported by the

Cheriton Graduate Scholarship and the Ontario Graduate Scholarship.

References

[1] Statista. Worldwide data created from 2010 to 2025, 2024.

[2] Mark Carlson, Alan Yoder, Leah Schoeb, Don Deel, Carlos Pratt, Chris Lionetti, and Doug Voigt. Software Defined Storage. Storage Networking
Industry Association Working Draft, pages 20-24, 2014.

[3] Peter M Chen, Edward K Lee, Garth A Gibson, Randy H Katz, and David A Patterson. RAID: High-performance, reliable secondary storage. ACM
Computing Surveys (CSUR), 26(2):145-185, 1994.

[4] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop distributed file system. In 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST), pages 1-10. Ieee, 2010.

[5] Sage Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn. Ceph: A scalable, high-performance distributed file system. In
Proceedings of the 7th Conference on Operating Systems Design and Implementation (OSDI’06), pages 307-320, 2006.

[6] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal, 2004(124):5, 2004.

[7] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li,

et al. TAO: Facebook’s distributed data store for the social graph. In 2013 USENIX Annual Technical Conference (USENIX ATC 13), pages 49-60, 2013.

Dutch T Meyer and William J Bolosky. A study of practical deduplication. ACM Transactions on Storage (ToS), 7(4):1-20, 2012.

Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip Shilane, Yu Hua, Min Fu, Yucheng Zhang, and Yukun Zhou. A comprehensive study of the

past, present, and future of data deduplication. Proceedings of the IEEE, 104(9):1681-1710, 2016.

Deyan Chen and Hong Zhao. Data security and privacy protection issues in cloud computing. In 2012 International Conference on Computer Science

==

[10

and Electronics Engineering, volume 1, pages 647-651. IEEE, 2012.
(11

Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Ottean, Jin Li, and Sudipta Sengupta. Primary Data Deduplication — Large scale study and system
design. In 2012 USENIX Annual Technical Conference (USENIX ATC 12), pages 285-296, 2012.

[12] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shilane, Stephen Smaldone, Mark Chamness, and Windsor Hsu. Characteristics of backup

workloads in production systems. In USENIX Conference on File and Storage Technologies (FAST), volume 12, pages 4-4, 2012.
[13

Phlip Shilane, Mark Huang, Grant Wallace, and Windsor Hsu. Wan-optimized replication of backup datasets using stream-informed delta
compression. ACM Transactions on Storage (ToS), 8(4):1-26, 2012.

Sarah Henderson. Document duplication: How users (struggle to) manage file copies and versions. Proceedings of the American Society for
Information Science and Technology, 48(1):1-10, 2011.

Alan Liu, Abdelrahman Baba, Sreeharsha Udayashankar, and Samer Al-Kiswany. DedupBench: A Benchmarking Tool for Data Chunking Techniques.
In 2023 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pages 469-474. IEEE, 2023.

(14

[15

Manuscript submitted to ACM

24

(16]

[17

(18

[19

[20

(21]

(22]

[23

[24

(25

Udayashankar et al.

Jingwei Li, Zuoru Yang, Yanjing Ren, Patrick PC Lee, and Xiaosong Zhang. Balancing storage efficiency and data confidentiality with tunable
encrypted deduplication. In Proceedings of the Fifteenth European Conference on Computer Systems, pages 1-15, 2020.

Nigel Tan, Jakob Luettgau, Jack Marquez, Keita Teranishi, Nicolas Morales, Sanjukta Bhowmick, Franck Cappello, Michela Taufer, and Bogdan
Nicolae. Scalable incremental checkpointing using gpu-accelerated de-duplication. In Proceedings of the 52nd International Conference on Parallel
Processing, ICPP ’23, page 665-674, New York, NY, USA, 2023. Association for Computing Machinery.

Kiatchumpol Suttisirikul and Putchong Uthayopas. Accelerating the cloud backup using GPU based data deduplication. In 2012 IEEE 18th
International Conference on Parallel and Distributed Systems, pages 766-769. IEEE, 2012.

Samer Al-Kiswany, Abdullah Gharaibeh, Elizeu Santos-Neto, George Yuan, and Matei Ripeanu. StoreGPU: Exploiting Graphics Processing Units to
Accelerate Distributed Storage Systems. In Proceedings of the 17th International Symposium on High Performance Distributed Computing, HPDC *08,
page 165-174, New York, NY, USA, 2008. Association for Computing Machinery.

Yucheng Zhang, Hong Jiang, Dan Feng, Wen Xia, Min Fu, Fangting Huang, and Yukun Zhou. AE: An asymmetric extremum content defined
chunking algorithm for fast and bandwidth-efficient data deduplication. In 2015 IEEE Conference on Computer Communications (INFOCOM), pages
1337-1345. IEEE, 2015.

Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua, Yuchong Hu, Qing Liu, and Yucheng Zhang. FastCDC: A fast and efficient content-defined
chunking approach for data deduplication. In 2016 USENIX Annual Technical Conference (USENIX ATC 16), pages 101-114, 2016.

Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Yukun Zhou. Ddelta: A deduplication-inspired fast delta compression approach. Performance
Evaluation, 79:258-272, 2014. Special Issue: Performance 2014.

Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A low-bandwidth network file system. In Proceedings of the Eighteenth ACM Symposium
on Operating Systems Principles (SOSP), pages 174-187, 2001.

Ryan NS Widodo, Hyotaek Lim, and Mohammed Atiquzzaman. A new content-defined chunking algorithm for data deduplication in cloud storage.
Future Generation Computer Systems, 71:145-156, 2017.

Kave Eshghi and Hsiu Khuern Tang. A framework for analyzing and improving content-based chunking algorithms. Hewlett-Packard Labs Technical
Report TR, 30(2005), 2005.

Fan Ni, Xing Lin, and Song Jiang. SS-CDC: A two-stage parallel content-defined chunking for deduplicating backup storage. In Proceedings of the
12th ACM International Conference on Systems and Storage, pages 86-96, 2019.

Nikolaj Bjerner, Andreas Blass, and Yuri Gurevich. Content-dependent chunking for differential compression, the local maximum approach.
Journal of Computer and System Sciences, 76(3-4):154-203, 2010.

Srecharsha Udayashankar, Abdelrahman Baba, and Samer Al-Kiswany. VM Images for Deduplication. https://www.kaggle.com/dsv/10561721, 2025.
Dian Rachmawati, JT Tarigan, and ABC Ginting. A comparative study of Message Digest 5 (MD5) and SHA256 algorithm. In Journal of Physics:
Conference Series, volume 978, page 012116. IOP Publishing, 2018.

Chunlin Song, Xianzhang Chen, Duo Liu, Jiali Li, Yujuan Tan, and Ao Ren. Optimizing the Performance of Consistency-Aware Deduplication
Using Persistent Memory. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023.

Sean Quinlan and Sean Dorward. Venti: A new approach to archival data storage. In USENIX Conference on File and Storage Technologies, 2002.
John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weather-
spoon, Westley Weimer, et al. Oceanstore: An architecture for global-scale persistent storage. ACM SIGOPS Operating Systems Review, 34(5):190-201,
2000.

Mike Dutch. Understanding data deduplication ratios. In SNIA Data Management Forum, volume 7, 2008.

James E Smith, Greg Faanes, and Rabin Sugumar. Vector instruction set support for conditional operations. ACM SIGARCH Computer Architecture
News, 28(2):260-269, 2000.

Intel. Intel® Intrinsics Guide. https://www.intel.com/content/www/us/en/docs/intrinsics- guide/index.html, 2024.

Somaia A Hassan, Mountasser MM Mahmoud, AM Hemeida, and Mahmoud A Saber. Effective implementation of matrix-vector multiplication on
Intel’s AVX multicore processor. Computer Languages, Systems & Structures, 51:158-175, 2018.

Shay Gueron and Vlad Krasnov. Fast quicksort implementation using AVX instructions. The Computer Journal, 59(1):83-90, 2016.

Robert L Bocchino Jr and Vikram S Adve. Vector LLVA: a virtual vector instruction set for media processing. In Proceedings of the 2nd International
Conference on Virtual Execution Environments, pages 4656, 2006.

Jorge Francés, Sergio Bleda, Andrés Marquez, Cristian Neipp, Sergi Gallego, Beatriz Otero, and Augusto Beléndez. Performance analysis of SSE and
AVX instructions in multi-core CPUs and GPU computing on FDTD scheme for solid and fluid vibration problems. The Journal of Supercomputing,
70:514-526, 2014.

Maximilian Bother, Lawrence Benson, Ana Klimovic, and Tilmann Rabl. Analyzing Vectorized Hash Tables across CPU Architectures. Proceedings
of the VLDB Endowment, 16(11):2755-2768, July 2023.

Markus Dreseler, Jan Kossmann, Johannes Frohnhofen, Matthias Uflacker, and Hasso Plattner. Fused Table Scans: Combining AVX-512 and JIT to
Double the Performance of Multi-Predicate Scans. In 2018 IEEE 34th International Conference on Data Engineering Workshops (ICDEW), pages
102-109, 2018.

Intel. Intel® Instruction Set Extensions Technology. https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html.
Advanced Micro Devices. Revision Guide for AMD Athlon 64 and AMD Opteron? ™ Processors. https://www.amd.com/content/dam/amd/en/
documents/archived-tech-docs/revision-guides/25759.pdf, 2003.

Manuscript submitted to ACM

https://www.kaggle.com/dsv/10561721
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/revision-guides/25759.pdf
https://www.amd.com/content/dam/amd/en/documents/archived-tech-docs/revision-guides/25759.pdf

Accelerating Data Chunking in Deduplication Systems using Vector Instructions 25

(44]

[45
[46]

(47

James Jeffers and James Reinders. Intel Xeon Phi Coprocessor High Performance Programming. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1st edition, 2013.

WikiChip. Zen 4 - Microarchitectures - AMD. https://en.wikichip.org/wiki/amd/microarchitectures/zen_4, 2022.

ARM. ARM NEON Architecture Overview. https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/
NEON:-instructions, 2013.

Ruimin Shi, Gabin Schieffer, Maya Gokhale, Pei-Hung Lin, Hiren Patel, and Ivy Peng. ARM SVE Unleashed: Performance and Insights Across HPC
Applications on Nvidia Grace. European Conference on Parallel Processing, 2025.

B. Sinharoy, J. A. Van Norstrand, R. J. Eickemeyer, H. Q. Le, J. Leenstra, D. Q. Nguyen, B. Konigsburg, K. Ward, M. D. Brown, J. E. Moreira, D. Levitan,
S. Tung, D. Hrusecky, J. W. Bishop, M. Gschwind, M. Boersma, M. Kroener, M. Kaltenbach, T. Karkhanis, and K. M. Fernsler. IBM POWERS
processor core microarchitecture. IBM Journal of Research and Development, 59(1):2:1-2:21, 2015.

Frederic P. Miller, Agnes F. Vandome, and John McBrewster. AltiVec. Alpha Press, 2010.

Ronald Rivest. RFC 1321: The MD5 message-digest algorithm. Technical report, Network Working Group, 1992.

D Eastlake 3rd. RFC 3174: US secure hash algorithm 1 (SHA1). Technical report, Network Working Group, 2001.

D. Eastlake 3rd and T. Hansen. RFC 4634: US Secure Hash Algorithms (SHA and HMAC-SHA). Technical report, Network Working Group, 2006.
Austin Appleby. MurmurHash3. 2011.

Lianhua Chi and Xingquan Zhu. Hashing techniques: A survey and taxonomy. ACM Computing Surveys (Csur), 50(1):1-36, 2017.

xxHash. xxHash - Extremely fast non-cryptographic hash algorithm. https://xxhash.com/, 2020.

Austin Appleby. SMHasher. 29:2016, 2016.

Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy, Aaron Vose, and Daniel Ernst. Evaluating Gather and Scatter Performance on CPUs and
GPUs. In Proceedings of the International Symposium on Memory Systems, MEMSYS °20, page 209-222, New York, NY, USA, 2021. Association for
Computing Machinery.

Danila Kutenin. Porting x86 vector bitmask optimizations to Arm NEON. https://community.arm.com/arm-community-blogs/b/servers-and-
cloud-computing-blog/posts/porting-x86-vector-bitmask-optimizations-to-arm-neon, 2022.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb,
Aditya Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh
Mishra. The design and operation of CloudLab. In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages 1-14, Renton, WA, July 2019.
USENIX Association.

Debian. Debian — The Universal Operating System. https://www.debian.org/, 2025.

VMWare. VMWare marketplace. https://marketplace.cloud.vmware.com/services, 2023.

Rust. GitHub - rust-lang/rust: Empowering everyone to build reliable and efficient software. https://github.com/rust-lang/rust, 2023.

Bo Pang, Erik Nijkamp, and Ying Nian Wu. Deep learning with tensorflow: A review. Journal of Educational and Behavioral Statistics, 45(2):227-248,
2020.

Marko Luksa. Kubernetes in action. Simon and Schuster, 2017.

Linux. The Linux Kernel Archives. https://www.kernel.org/, 2023.

GNU. GNU tar 1.35: Basic Tar Format. https://www.gnu.org/software/tar/manual/html_section/Standard.html, 2023.

Mordechai Haklay and Patrick Weber. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Computing, 2008.

GeoFabrik. GEOFABRIK. https://www.geofabrik.de/, 2025.

Redis. Redis. https://redis.io/, 2023.

MySQL. MySQL. https://www.mysql.com/, 2023.

Transaction Processing Council. TPC-C Overview. https://www.tpc.org/tpce/detail5.asp, 2023.

Wikipedia. List of films based on actual events. https://en.wikipedia.org/wiki/List_of films _based on_actual events, 2022.

Owen Randall and Paul Lu. Predicting deduplication performance: An analytical model and empirical evaluation. In 2022 IEEE International
Conference on Big Data (Big Data), pages 319-328, 2022.

DMTF. Open virtualization format white paper. https://www.dmtf.org/sites/default/files/standards/documents/DSP2017_1.0.0.pdf, 2009.
OpenStreetMap. OSM file formats - OpenStreetMap Wiki. https://wiki.openstreetmap.org/wiki/OSM_file_formats, 2025.

Irving W Burr. Cumulative Frequency Functions. The Annals of Mathematical Statistics, 13(2):215-232, 1942.

Youjip Won, Kyeongyeol Lim, and Jaechong Min. MUCH: Multithreaded Content-Based File Chunking. IEEE Transactions on Computers, 64(5):1375-
1388, 2015.

Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Zhongtao Wang. P-Dedupe: Exploiting Parallelism in Data Deduplication System. In 2012
IEEE Seventh International Conference on Networking, Architecture, and Storage, pages 338-347, 2012.

Fan Ni and Song Jiang. RapidCDC: Leveraging Duplicate Locality to Accelerate Chunking in CDC-Based Deduplication Systems. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC *19, page 220-232, New York, NY, USA, 2019. Association for Computing Machinery.

Erik Kruus, Cristian Ungureanu, and Cezary Dubnicki. Bimodal content defined chunking for backup streams. In Fast, pages 239-252, 2010.
Mu’men Al Jarah, Sreeharsha Udayashankar, Abdelrahman Baba, and Samer Al-Kiswany. The Impact of Low-Entropy on Chunking Techniques for
Data Deduplication. In 2024 IEEE 17th International Conference on Cloud Computing (CLOUD), pages 134-140, 2024.

Manuscript submitted to ACM

https://en.wikichip.org/wiki/amd/microarchitectures/zen_4
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-instructions
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/NEON-architecture-overview/NEON-instructions
https://xxhash.com/
https://community.arm.com/arm-community-blogs/b/servers-and-cloud-computing-blog/posts/porting-x86-vector-bitmask-optimizations-to-arm-neon
https://community.arm.com/arm-community-blogs/b/servers-and-cloud-computing-blog/posts/porting-x86-vector-bitmask-optimizations-to-arm-neon
https://www.debian.org/
https://marketplace.cloud.vmware.com/services
https://github.com/rust-lang/rust
https://www.kernel.org/
https://www.gnu.org/software/tar/manual/html_section/Standard.html
https://www.geofabrik.de/
https://redis.io/
https://www.mysql.com/
https://www.tpc.org/tpcc/detail5.asp
https://en.wikipedia.org/wiki/List_of_films_based_on_actual_events
https://www.dmtf.org/sites/default/files/standards/documents/DSP2017_1.0.0.pdf
https://wiki.openstreetmap.org/wiki/OSM_file_formats

26

(82]

(83

(84

(85

(86

%
=

(88

(89

(90]

[91

(92]

(93]

[94

[95

[96]

[97]

(98

[99]

[100

Udayashankar et al.

Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. Similarity and Locality Based Indexing for High Performance Data Deduplication. IEEE Transactions
on Computers, 64(4):1162-1176, 2015.

Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar, Greg Trezis, and Peter Camble. Sparse indexing: Large scale, inline
deduplication using sampling and locality. In USENIX Conference on File and Storage Technologies (FAST), volume 9, pages 111-123, 2009.
Deepavali Bhagwat, Kave Eshghi, Darrell DE Long, and Mark Lillibridge. Extreme binning: Scalable, parallel deduplication for chunk-based file
backup. In 2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems, pages 1-9. IEEE,
2009.

Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Wojciech Kilian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian Ungureanu,
and Michal Welnicki. HYDRAstor: A scalable secondary storage. In USENIX Conference on File and Storage Technologies (FAST), volume 9, pages
197-210, 2009.

Phlip Shilane, Mark Huang, Grant Wallace, and Windsor Hsu. WAN-optimized replication of backup datasets using stream-informed delta
compression. ACM Transactions on Storage (ToS), 8(4):1-26, 2012.

Xiangyu Zou, Wen Xia, Philip Shilane, Haijun Zhang, and Xuan Wang. Building a high-performance fine-grained deduplication framework for
backup storage with high deduplication ratio. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages 19-36, 2022.

Yucheng Zhang, Hong Jiang, Dan Feng, Nan Jiang, Taorong Qiu, and Wei Huang. {LoopDelta}: Embedding locality-aware opportunistic delta
compression in inline deduplication for highly efficient data reduction. In 2023 USENIX Annual Technical Conference (USENIX ATC 23), pages
133-148, 2023.

Lars Nielsen, Dorian Burihabwa, Valerio Schiavoni, Pascal Felber, and Daniel E. Lucani. MinervaFS: A User-Space File System for Generalised
Deduplication: (Practical experience report). In 2021 40th International Symposium on Reliable Distributed Systems (SRDS), pages 254-264, 2021.
Haikun Liu, Xiaozhong Jin, Chencheng Ye, Xiaofei Liao, Hai Jin, and Yu Zhang. I/O Causality Based In-Line Data Deduplication for Non-Volatile
Memory Enabled Storage Systems. IEEE Transactions on Computers, 73(5):1327-1340, 2024.

Annett Ungethum, Johannes Pietrzyk, Patrick Damme, Dirk Habich, and Wolfgang Lehner. Conflict Detection-Based Run-Length Encoding -
AVX-512 CD Instruction Set in Action. In 2018 IEEE 34th International Conference on Data Engineering Workshops (ICDEW), pages 96-101, 2018.
Daniel Lemire and Owen Kaser. Faster 64-bit universal hashing using carry-less multiplications. Journal of Cryptographic Engineering, 6:171-185,
2016.

Tony C Pan, Sanchit Misra, and Srinivas Aluru. Optimizing high performance distributed memory parallel hash tables for DNA k-mer counting. In
2018 International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pages 135-147. IEEE, 2018.

Youngjoo Shin, Dongyoung Koo, and Junbeom Hur. A Survey of Secure Data Deduplication Schemes for Cloud Storage Systems. ACM Computing
Surveys, 49(4), Jan 2017.

Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-locked encryption and secure deduplication. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 296-312. Springer, 2013.

Jian Liu, N. Asokan, and Benny Pinkas. Secure Deduplication of Encrypted Data without Additional Independent Servers. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, page 874-885, New York, NY, USA, 2015. Association for Computing
Machinery.

Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Side Channels in Cloud Services: Deduplication in Cloud Storage. IEEE Security and
Privacy, 8(6):40-47, 2010.

Yanjing Ren, Jingwei Li, Zuoru Yang, Patrick P. C. Lee, and Xiaosong Zhang. Accelerating Encrypted Deduplication via SGX. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), pages 957-971. USENIX Association, July 2021.

Tong Sun, Bowen Jiang, Borui Li, Jiamei Lv, Yi Gao, and Wei Dong. {SimEnc}: A {High-Performance } {Similarity-Preserving} encryption approach
for deduplication of encrypted docker images. In 2024 USENIX Annual Technical Conference (USENIX ATC 24), pages 615-630, 2024.

Yifeng Zheng, Xingliang Yuan, Xinyu Wang, Jinghua Jiang, Cong Wang, and Xiaolin Gui. Toward Encrypted Cloud Media Center With Secure
Deduplication. IEEE Transactions on Multimedia, 19(2):251-265, 2017.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Background
	2.1 Data Chunking
	2.2 Deduplication Metrics
	2.3 Vector Instructions

	3 Motivation
	3.1 Performance bottlenecks in data deduplication
	3.2 Accelerating hash-based algorithms with vector instructions

	4 VectorCDC Design
	4.1 Tree-based Extreme Byte Search
	4.2 Packed Scanning for Range Scans
	4.3 Putting it together: AE-Max, AE-Min, MAXP, and RAM

	5 Implementation
	6 Evaluation
	6.1 Space Savings and Chunk Size Distributions
	6.2 Chunking Throughput
	6.3 Throughput breakdown - Extreme Byte Search vs Range Scan
	6.4 VectorCDC across different vector instruction sets

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

