Slicify: Fault Injection Testing for Network
Partitions

Seba Khaleel*
University of Waterloo
Waterloo, Canada
stayser @uwaterloo.ca

Abstract—Modern distributed systems are complex. They in-
clude hundreds of components that implement complex protocols
such as scheduling, replication, and access control. These systems
are expected to offer high availability and preserve their data
even in the face of external environmental faults. Testing is
the primary approach for improving system reliability. Testing
against environmental faults such as hardware failures, memory
corruption, and network problems is complicated since they can
happen at any step in the protocol and affect any component.

We present Slicify, a generic framework to test the network
partition resilience of distributed systems. Slicify injects network
partitions during unit tests to analyze system behavior in their
presence. Slicify reduces the test space in an application-agnostic
fashion with its novel connection tracking mechanism. We verify
Slicify’s capabilities by reproducing previously documented fail-
ures in two production systems. In addition, we demonstrate
its effectiveness by uncovering new failures in three popular
distributed systems.

Index Terms—distributed computing, fault tolerance

I. INTRODUCTION

Modern distributed systems should be reliable, highly avail-
able, and durable. Building a reliable distributed system is
challenging due to failures that impact the system hardware
or software [1]. Among the most complex failures to tolerate
are those caused by environmental faults external to the
distributed system’s code. Examples of such faults include
memory corruption, disk corruption, and network failures.

Testing and debugging the system’s tolerance to external
faults using standard testing frameworks is complicated as
these faults can occur at any point during system operation.
Furthermore, these faults can impact any component or stored
data. For instance, network faults can impact communication
between two subgroups of cluster nodes, and disk corruption
can impact data or metadata objects. The impact of a fault
depends on which components and data experience the fault
as well as when it occurs.

To improve the resilience of systems to external faults,
developers resort to testing them with fault injection i.e. the
testing framework includes a mechanism to mimic external
failures by injecting them during system tests. One example is
memory fault injection [2], in which corrupted data is injected
into system memory to analyze its ability to detect and handle
the fault. Despite significant attention being devoted to testing

* Denotes equal contribution

Sreeharsha Udayashankar*
University of Waterloo
Waterloo, Canada
s2udayas @uwaterloo.ca

Samer Al-Kiswany
University of Waterloo
Waterloo, Canada
alkiswany @uwaterloo.ca

via fault injection [2], [3], it has remained largely unused when
testing for network failures such as network partitions.

Network partitions [4] have detrimental consequences and
can lead to catastrophic system failures. For instance, network
partitions led to service outages at Cloudflare [5], Google [6],
Lyft [7], and Amazon AWS [8]. NEAT [9] studies network
partitioning failures from 25 diverse production systems and
report that they lead to data loss, data corruption, stale reads,
double locking, and system crashes. In addition, NEAT iden-
tifies a specific kind of network partition: partial partitions.

Partial partitions disrupt the communication between a sub-
set of nodes in the cluster while other nodes remain unaffected.
Figure 1c shows a cluster that is impacted by a partial partition,
leading to the division of nodes into three distinct groups.
Nodes in Group 1 and Group 3 are disconnected while Group 2
nodes can communicate with those in both other groups. Such
partitions cause the system to enter a state of confusion. Some
nodes (Groups 1 and 3) run fault tolerance mechanisms while
others (Group 2) do not, as they see that all cluster nodes are
alive and healthy. This state of confusion is poorly understood
and tested. Partial partitions can have a significant impact.
NIFTY [10], [11] studied partial partitions and reported that
they lead to catastrophic failures such as data loss, data
corruption, and crashes in production systems. Furthermore,
the study shows that these failures are easy to manifest and
are primarily caused by system design flaws.

NEAT [9] and NIFTY [10] both discuss ways to improve
the resilience of systems to such faults and highlight that
comprehensive partition-based testing is the key to improving
system reliability. Unfortunately, no existing testing tool can
readily test against this type of network failure. Designing
a testing framework for network partitions is challenging
because of the sheer number of possible partitions and the
points of time during which they can occur. This significantly
increases the number of test cases, making it impossible to
test every possible scenario.

In this paper, we present Slicify, a fault injection framework
to test system behavior under network partitions. Slicify facil-
itates the testing of distributed systems for partition resilience
while itself remaining application agnostic. Slicify limits the
test space using a novel connection tracking mechanism to
make testing feasible. It uses a connection tracking module to
identify the system components communicating during fault-

1)
111

Groupl

[]
[]

roupl roup2 Group2

(a) Complete Partition (b) Simplex Partition

Partial PN
Partition .

-
—— -
-

Groupl \

oo
D
/ Group3

-GroupZ
(c) Partial Partition

Fig. 1: Types of Network Partitions

free scenarios and uses this knowledge during partition testing.

We implement Slicify and verify its capabilities by using it
to reproduce previously documented failures in Apache Spark,
Mesos [12] and Kafka [13] (§V). In addition, we demonstrate
the effectiveness of Slicify by using it to test three popular
systems (§VI - §VIII) against network partitions: Hazelcast
[14], Apache Flink [15], and ActiveMQ Artemis [16]. Slicify
finds four previously undocumented bugs with catastrophic
impact across these systems, including data inconsistency
and system unavailability. We have reported these bugs via
failure reports [17]-[19] to the respective system development
communities. All the failures arise from system design flaws
and were discovered by Slicify without knowledge of the
system design. We have made our code publicly available [20].

II. BACKGROUND AND MOTIVATION
A. Network Partitions

Network partitions are failures that disrupt the communica-
tion between nodes in a system. Turner et al. [4] report that
network partitions happen approximately once every four days
within the California-wide CENIC network, Google reported
40 network partitions in two years [21] and according to
Microsoft’s findings, network partitions account for 70% of
their reported downtime [22]. Network partitions occur due
to numerous underlying factors such as hardware failures
[22], software issues [23], network congestion, or temporary
disruptions [4]. Each scenario presents unique challenges for
system reliability, data consistency, and fault tolerance.

Network partitions can be categorized based on their topo-
logical impact into complete, partial, and simplex partitions
[9]. Figure 1 shows examples of each of these. A complete
partition (Figure la) divides a cluster into two completely
disconnected groups. In a simplex partition (Figure 1b), traffic
flows only in one direction. Finally, a partial partition (Figure
Ic) affects some but not all nodes in the system.

B. Impact of Network Partitions

NEAT [9] and NIFTY [10], [11] analyze the impact of
network partitions on distributed systems. They report that

network partitions cause catastrophic failures such as data loss,
corruption, and unavailability. The majority of failures that
happen due to network partitions are silent, causing permanent
damage which persists in the system even when the partition
is healed. The failures are also easy to manifest; they need
only a few operations to occur. One of their key insights is
that the majority of these failures can be avoided with better
testing. They find that these failures can be reproduced using
a small cluster of three nodes by using a testing framework
capable of injecting network partitions.

C. Testing System Behavior under Network Partitions

Network partition testing today is cumbersome, requires
detailed knowledge of system architecture and fails to cover
all possible test cases. Network partitions come in three flavors
(8II-A), can occur at any time before or during test operations
[9] and can affect any combination of system components,
resulting in a huge number of possible test scenarios. It is not
feasible to run every unit test under all of these scenarios due
to the computational cost involved.

Hence, the majority of partition-related testing today is
done with human intervention. For instance, NIFTY [10] and
CASPR [12] both analyze the impact of network partitions
on production systems. To make testing feasible, they ana-
lyze each system’s design in detail before manually deciding
partition placement and timing. Similarly, NEAT [9] offers
a framework for network partition injection but leaves it up
to the developer to decide when, how, and between which
system components to place these partitions. Due to the
sheer size of the test space and the increasing complexity
of modern applications, such manual testing often results in
poor coverage and untested behavior. Slicify instead provides
an automated and application-agnostic way for developers to
test their systems, reducing the effort required for partition
resilience testing while simultaneously improving coverage.

III. DESIGN

Slicify is an application-agnostic tool to facilitate testing
distributed systems for network partition resilience. Figure 2
shows the design of Slicify, consisting of a command node and
cluster nodes. The command node houses the Coordinator,
which is responsible for coordinating tests and inserting net-
work partitions. The distributed system to be tested is deployed
on the cluster nodes.

The coordinator contains various modules to support its
operations. To allow for testing distributed systems in an
application-agnostic fashion, it uses a SUT Control mod-
ule. This module exposes abstract APIs relevant to system
management, such as deployment and test execution, to the
developers. To limit the test space and identify intra-system
communication, it uses a Connection Tracker module.
Finally, network partitions are inserted using the Partition
Injection module. As shown in Figure 2, Slicify also runs
a lightweight Daemon process on each cluster node to com-
municate with the coordinator and execute local commands.
By default, Slicify uses NEAT’s [9] and NIFTY’s [10] insights

AN

Cluster Node

(Daemon \

Control
Sub-Daemon

I Sub-Daemon I

Tracking ~ ¥feeeet uid
Module '5

(Command Node \

)

SUT Control
Module

Partition
Coordinator jecti
Module

Application

\——

N

Fig. 2: Slicify’s Design

to test for only partitions involving up to 3 nodes, as the
majority of failures can be reproduced with such partitions.
However, depending on the available computational resources,
this can be extended to cover all possible partitions.

A. SUT Control Module

The SUT Control Module allows the coordinator to
control the System Under Test (SUT) i.e. the distributed
system to be tested. The module exposes the following APIs
to be implemented by the system developers:

e Installation API: This API is used to install the SUT and
its required dependencies onto all cluster nodes.

o Deployment API: This API is used to launch or terminate
SUT instances on cluster nodes.

e Test Execution API: This API allows unit tests to be
run by the coordinator. Unit tests consists of multiple
simple operations such as database queries [24] or PUT
operations within a key-value store [25].

o Result Verification API: For each unit test, this API is
used to analyze the logs to verify execution correctness.
For instance, the verification for a PUT operation can be
to GET back the key, verify its value and ensure that none
of the involved nodes report an error.

B. Connection Tracking Module

Distributed systems typically use tens to hundreds of nodes.
As discussed in §II-C, running each unit test with every
possible network partition is not feasible. The goal of the
connection tracking module is to identify the nodes hosting
system components involved in network communication dur-
ing each unit test. This information helps Slicify significantly
reduce the number of test cases. Disrupting communication
between non-communicating nodes would not affect the unit
test and thus, such nodes are not considered during partition
placement.

Filtering out noise. Modern cloud platforms run complex
software stacks. In addition to the communication happening
between SUT components, there is significant background
traffic between cluster nodes. This may involve communi-
cation between system processes or other platform-centric
applications such as monitoring tools and health checkers. To
eliminate this noise, Slicify filters out communication external

to the SUT by obtaining a list of previously open ports on each
cluster node before SUT deployment and ignoring their traffic.

Clock Synchronization. Before starting the capture pro-
cess, the system clocks of all cluster nodes are synchronized
(using a protocol such as NTP [26]) to the command node’s
clock. Clock synchronization makes it easier to detect the
direction of traffic flow during the capture phase.

Distributed Packet Capture. Slicify captures network ac-
tivity in a distributed fashion using all its daemons and then
processes the packet logs on the command node. Each daemon
runs a packet capture utility such as Wireshark [27] to capture
all packets sent and received by its node during the test.

However, this can still result in a large number of packets
captured per node. To reduce this, the daemons only capture
the headers of SYN and FIN packets for TCP connections and
ignore the rest of the flow. For UDP connections, they capture
all packet headers. All captured data is stored locally.

Communication Log Analysis. After the unit test is com-
plete, the captured packet logs from all cluster nodes are sent
to the command node. The connection tracker first analyzes
each log separately to identify the following fields for each
flow: Protocol, Source IP, Source Port, Destination IP, Desti-
nation Port and Start and End Timestamps. For TCP connec-
tions, the connection information and timestamps are retrieved
from the SYN and FIN packets. For UDP communication,
the start timestamp is retrieved from the first UDP packet
captured between the source and destination ports while the
end timestamp is retrieved from the last captured packet. The
connection tracker module then merges the lists of connections
from all cluster nodes and eliminates duplicates. This allows
it to produce a list of all node pairs that communicate during
the capture process.

We note that some background communication unrelated to
the SUT may start after noise filtering or during the unit test.
This may add a few additional test cases for fault injection
but does not incur a significant overhead. If this becomes a
concern, Slicify can be configured to run the previous steps
multiple times and select the output with the shortest list of
connections.

C. PFartition Injection Module

Figure 2 shows the partition injection module. The
Coordinator uses the partition injection module to disrupt
all communication between the target nodes. When a partition
is desired between two nodes, the partition injection module
notifies the corresponding sub-daemons on the target nodes.
The sub-daemons configure the operating system to drop
packets from the other node, simulating a network partition.
Healing a partition involves reversing these changes.

D. Putting It Together - Slicify’s Operational Procedure

The Coordinator first installs the SUT and required
dependencies onto cluster nodes using the SUT Control
Module’s installation API. Unit tests are run via the Test
Execution API from the SUT Control Module while the
Connection Tracking module obtains the list of node

pairs communicating during the test. The Coordinator also
records the time taken to run the test without any partitions,
called the fault-free execution time.

Following this, for each node pair in the list, the
Coordinator uses the Partition Injection module
to inject a network partition between the nodes. It then uses
the SUT Control Module to rerun the unit test and verify
its output. Slicify also repeats this procedure for all triplets
of communicating nodes i.e. if Nodes A and B communicate
with Node C, a partition is inserted such that A and B are
both isolated from C. Finally, Slicify isolates one node at a
time from the rest of the cluster. These cover the majority
of cases because, as shown by NEAT [9] and NIFTY [10],
almost all issues can be reproduced by 3 nodes or less
experiencing partitions. However, if computational resources
are available, Slicify can be configured to test all combinations
of partitions involving more nodes. If the verification fails, the
Coordinator reports a test failure. Note that while Slicify
supports inserting partitions at any time during unit tests, our
evaluation only checks for the impact of pre-existing partitions
i.e. partitions that exist when a unit test is begun.

In some cases, the partition causes the system to hang
indefinitely, i.e., the unit test never completes. In this case,
the Coordinator will wait for 5x the fault-free execution
time before reporting a failure. This is to allow sufficient time
for SUT fault tolerance techniques to detect and handle the
problem.

For each failed test scenario the Coordinator records
the network partition details and collects SUT logs from all
cluster nodes. This information is stored for further inspection
by system developers.

E. Slicify’s Extensibility

Slicify is an application-agnostic tool. Slicify’s design
makes it easy to extend the tool to test new systems. Outside of
the SUT Control Module, the tool is generic and follows
the same operational procedure for all distributed applications.
For a developer to use the tool to test a new system, they
have to implement the SUT Control Module APIs for
their system. While the tool exposes an interface for these
APIs, developers have complete flexibility in tailoring the
implementation to their respective applications.

IV. IMPLEMENTATION

We implement Slicify in ~ 750 lines of Python code. We
use Python 3.7 for our implementation. We have made our
code publicly available [20].

SUT Control Module. To estimate the amount of effort
needed to develop the SUT control module, we have released a
Slicify-compatible client-server application with our code [20].
We implemented the SUT control module for this application
using ~ 50 lines of Python and Linux shell code.

Connection Tracking Module. We use chrony [28], an
open-source time synchronization tool, to synchronize the
system clocks across cluster nodes before capturing network

Driver

[Worker l}x{Worker ZHWorker 3}

Fig. 3: Spark Failures with Mesos

communication. In our implementation, all nodes are synchro-
nized using the command node’s clock as a reference. We use
PyShark [29], to capture packets on each cluster node. We
capture IPv4, TCP, and UDP packets during our analysis.
Partition Injection Module. We use iptables [30] to
disrupt/restore the connections between nodes in the network.
Testbed. For all our experiments, we use c220g1 [31] nodes
from CloudLab [32]. The machines consist of two Intel
Haswell E5-2630 CPUs with 8 cores each, 128GB of RAM,
and a 10GBps network connection. We mention the cluster
size for each experiment in its description.

V. REPRODUCING DOCUMENTED FAILURES

To verify the functionality of our tool, we reproduce four
failures previously reported in Apache Spark [33] and Apache
Kafka [34]. We select these failures because they manifest
in a complex setup involving multiple subsystems and have
catastrophic effects. We test Spark with both its standalone
scheduler [33] and Mesos [35]. We test Kafka paired with
Zookeeper [36]. Slicify successfully detects the reported fail-
ures, and our analysis of the returned logs confirms that the
reason for the failure matches the reason previously reported in
the failure reports. Table I summarizes our verification efforts.

A. Failures in Spark

Apache Spark. Apache Spark is a popular data ana-
lytics system. Spark’s system architecture consists of three
main components: the application driver, cluster manager, and
worker nodes. While Spark comes bundled with a cluster
manager (Spark Standalone), it supports the integration of
other resource managers such as Mesos [35].

The general workflow of a Spark application is as follows:
the client submits a job to the cluster manager after which the
manager starts a driver program. The driver works with the
cluster manager to allocate executors on worker nodes and
launch executors. The executors run tasks and may exchange
intermediate results among themselves. The driver monitors
task progress, collects results, and reports them.

Spark with Mesos. Apache Mesos is a cluster manager
that handles resource management and allocation in large
distributed environments. Mesos runs daemons (a.k.a. Mesos
agents) on cluster nodes to monitor node resources. The Mesos
master aggregates information about these available resources
and offers them to Spark applications (drivers).

CASPR [12] reports two failures when running Spark with
Mesos. The first occurs when there is a partial partition

System Partition Impact Reported By Detected by Slicify?
Spark Worker - Worker Halt CASPR [12]

Spark + Mesos ‘Worker - Worker Halt CASPR [12] v
Driver - Mesos Master Halt CASPR [12] v
Kafka + ZK ZK - Replicas Halt Kafka-8702 [13] v
Hazelcast - Maps Member - Member Operation Failure - v
Hazelcast - Locks Member - Member Operation Failure - v
Flink Task Manager - Task Manager | Operation Failure - v
ActiveMQ Live Broker - Passive Broker Inconsistent State - v

TABLE I: Summary of partitions detected by Slicify on production systems

between two worker nodes, leading to a system pause. This
occurs because the executors on these nodes cannot communi-
cate and exchange data during the shuffle phase. The second
failure occurs when there is a partial partition between the
driver and Mesos master before the application starts. As the
driver does not receive any resource offers from the Mesos
master, the application does not start.

We use Slicify to test Spark with Mesos v1.11.0. Figure 3
shows the components of our cluster: Driver, Mesos master,
and three worker nodes that host executor instances. We run
the WordCount application used by CASPR [12].

Slicify detects both failures reported by CASPR [12]. The
first failure occurs when Slicify injects a partition between
two workers (shown in Figure 3 with a red marker). We
get the same effect of complete system halt as reported by
CASPR [12] and we verified the reason for the halt using
the application logs. Slicify reports the second failure when it
injects a partition between Mesos master and the driver (shown
in Figure 3 with a blue marker). The driver never starts running
as it does not receive any resources from the cluster manager.

Spark Standalone. In addition to Spark with Mesos, we
used Slicify to test Spark with the standalone cluster manager.
CASPR [12] reports that the failure between two workers
affects Spark Standalone as well, causing a complete system
halt. Slicify also manages to detect and report this failure.

B. Failures in Apache Kafka and Zookeeper

Apache Kafka is an open-source distributed message queu-
ing system [34]. Kafka relies on Apache ZooKeeper [36] for
coordination, metadata management, and leader election.

Kafka Architecture. Data in Kafka is organized into topics,
consisting of multiple shards. Each shard can hold multiple
messages. Kafka operates in a distributed cluster that consists
of brokers, producers, and consumers. Producers publish mes-
sages to Kafka topics, and Kafka handles the distribution of
these messages across shards within the topic. Brokers are
responsible for storing data. Consumers subscribe to Kafka
topics to retrieve records and consume messages.

Kafka maintains fault tolerance by replicating shards across
multiple brokers. Each shard has one leader and multiple
replicas, ensuring that the data remains available if a broker
fails. If a leader fails, Kafka relies on ZooKeeper to detect the
failure and elect a new leader for the shard.

Failure Details. Ticket #8702 [13] reports a failure within
a cluster that deploys Kafka with ZooKeeper. They report a
failure when a partial partition occurs between the Kafka shard
leader and all replicas. In such cases, replicas pause operations
as they can no longer contact the leader. The leader pauses its
operations as it can no longer contact the majority of replicas.
On the other hand, ZooKeeper does not detect a problem as
all nodes appear healthy and thus does not elect a new leader.
As a result, the system halts until the partition is healed.

Reproducing the failure. We use Slicify to test Kafka.
Figure 4 shows our deployment. We deploy Kafka v2.3.0 with
three replicated brokers i.e. each message is replicated on three
nodes. We use Kafka’s benchmarking tool to generate load
onto the system. We use five topics distributed across cluster
nodes and a set of producers and consumers. Each producer
sends messages to a dedicated topic and each topic has one
consumer. We deploy ZooKeeper within our cluster to monitor
the cluster nodes.

Slicify reports a failure when it introduces a network parti-
tion between the shard leader and all other replicas (Figure 4).
During this partition, all operations fail. The cluster remains
unavailable until the partition heals because no new leader is
elected. As ZooKeeper can reach the current leader, it assumes
all operations are normal and does not elect a new leader. We
examined the Kafka logs and verified this.

VI. NETWORK PARTITIONS WITH HAZELCAST

In §VI - §VIII, we demonstrate Slicify’s effectiveness by
using it to test three popular distributed systems, uncovering
new failures. Within this section, we examine Hazelcast [14],
an in-memory distributed computation and storage system.
Hazelcast provides distributed data structures such as maps,
queues, and locks. Table I summarizes our experiments with

Zookeeper
Kafka

[R::It: 1 }‘X{ Leader }x_{ R:palti: 2}

Fig. 4: Kafka Failure

Hazelcast. Slicify discovers two undocumented bugs, which
we report by filing failure tickets [19].

A. Hazelcast’s Design

Hazelcast’s system architecture consists of members and
clients (Figure 5). A member is the computational and storage
unit of the Hazelcast cluster. Clients communicate with the
cluster members.

Consistency Guarantees. Hazelcast offers different guaran-
tees for different operations. Synchronization operations such
as locks and countdown latches are always linearizable and
are implemented using a Raft [37] replication protocol. Data
structures such as maps and queues offer a lighter weight
replication mechanism that can be configured to be strongly
or eventually consistent.

Network Partition Tolerance. Hazelcast’s design includes
mechanisms for tolerating partial and complete network parti-
tions [38], [39].To tolerate a partial partition, cluster members
perform all-to-all heartbeating i.e. each member heartbeats
all other cluster members. If a member detects that another
member is not reachable, it reports this connection failure
to the master member. The master member collects this data
and builds a graph to represent cluster connectivity. It then
analyzes the graph to identify the largest connected subset of
cluster members (a.k.a maximum clique). In the event of a
partial partition, all the members outside this clique are shut
down. This effectively turns a partial partition into a complete
partition. If the master member is outside the clique, it shuts
down and the member with the next lowest ID takes its place.

B. Hazelcast’s Partition Tolerance

Maps in Hazelcast are sharded and replicated among mem-
bers [40]. Each shard stores a part of the map. Each shard can
have multiple replicas; one acts as the primary replica while
the others are backups. Note that the primary replica can be
different from the master member.

Clients send read and write requests for an object to the
primary replica of the shard holding the object. If the primary
replica fails, one of the backup replicas takes over the primary
role. Each member may be the primary replica for some shards
and a backup for others. Hazelcast uses shard tables to help
cluster members keep track of the primary replica for each
shard. The shard table is created by the master member who
periodically sends it to all members. Hazelcast can use either
synchronous or asynchronous replication.

Hazelcast uses keys to distribute map entries across shards.
When an entry is added to the map, Hazelcast assigns that
entry to a specific shard based on the key’s hash value. If a
client wants to read / write a specific key, Hazelcast hashes
the key and calculates the shard ID in which the data will be
stored. The client randomly connects to one of the members
listed in its configurations. The client finds the primary replica
for the shard hosting the key within this member’s shard table
and sends the request to it.

Test Setup. We use Slicify to test maps and fenced locks.
We deploy Hazelcast v5.3.1 on a four node cluster. Three

Client

Member Member Member
1 2 3

Fig. 5: Hazelcast Failures

nodes are members and one node is a client. We configure the
cluster with synchronous replication and a replication level of
3. The client writes 1000 value objects of size 1 KB to the
map. The chosen keys result in all shards being accessed. We
enable the partial partition and the split-brain protection fault
tolerance mechanisms. The minimum cluster size is set to 2.

Failure Discussion. Our tests discover a failure in the client
access protocol, where a client is unable to access the system
despite member availability to serve its request. The failure
occurs when a partial partition impacts the communication
between two cluster members. Figure 5 shows such a partial
partition using a red marker.

In this scenario, the master member detects this partition.
Following the partial partition tolerance mechanism, the mas-
ter member splits the cluster into two sub clusters, with one
side containing the majority of nodes that are fully connected.
Nodes on the minority side pause operations and do not
process client requests.

Clients select which member to send their requests to in
random fashion. If the client is not impacted by the partition
and can reach all members, it can send its request to a
member on the minority side. This request will fail with an
exception indicating that the failure occurred as the operation
was sent to the minority side. Hazelcast fails these operations
unnecessarily although the client may be connected to the
majority side and can send its request to a member there. We
discovered a similar failure when using fenced locks as well.

VII. NETWORK PARTITIONS WITH FLINK

Apache Flink [15] is a popular stream processing engine.
Table I summarizes our efforts to test Flink with Slicify. We
uncover one undocumented bug which causes jobs to fail
despite resources being available to execute them. We report
this bug by filing a failure ticket [18].

A. Flink’s Design

Figure 6 shows the Flink system architecture. Flink consists
of a single JobManager and various TaskManagers. The Job-
Manager receives jobs from clients, tracks job progress, and
manages resources. A TaskManager runs on every worker node
in the cluster and executes tasks. Flink quantizes resources
as slots. A slot is the basic unit of resource scheduling
and expressing resource requirements for tasks. The list of
TaskManagers is provided during cluster deployment and is
always traversed in the same order.

TaskManagers register their slots with the JobManager upon
initialization. The JobManager stores these slots in a pool.

JobManager
TaskManagerHTaskManagerHTaskManagerHTaskMa nager H TaskManager

Fig. 6: Flink Failure

When a job is submitted, the JobManager queries the pool. If
the pool has sufficient resources, they are assigned to the job,
even if they are located across multiple TaskManagers. Once
execution is complete, slots are released back to the pool.
TaskManagers may communicate to exchange intermediate
results during the shuffle stage.

B. Flink’s Partition Tolerance

We use Slicify to test the execution of a WordCount
application on Flink. We deploy Flink v1.17.1 on a cluster
of six nodes; as shown in Figure 6. We enable checkpointing
with a restart failover strategy, configured to attempt a restart
three times with 10 seconds between attempts.

Each TaskManager has one slot, and the WordCount appli-
cation submission has a level of parallelism of three. This
forces the JobManager to run the tasks on three different
TaskManagers. Shaded TaskManagers in Figure 6 represent
the TaskManagers assigned to execute the job.

Failure Discussion. In the WordCount application,
TaskManagers exchange data during the shuffle stage. If
a partial partition between TaskManagers prevents the data
exchange, this causes the job execution to fail and the allo-
cated slots to be released. As restart failover is enabled, the
JobManager restarts the job.

The JobManager checks the slot pool to find resources for
the rerun and, due to the greedy scheduling strategy, it selects
the first available slots. As the JobManager is unaware of
the partition between TaskManagers, the slots impacted by
the partial partition are still at the top of the list. Thus, the
JobManager selects the same TaskManagers chosen earlier.
The job rerun fails as well. Flink tries to run the job 3 times
before giving up and raising an exception, terminating the
application despite having available resources.

VIII. NETWORK PARTITIONS WITH ACTIVEMQ ARTEMIS

ActiveMQ Artemis [16] is a message queuing system. Table
I summarizes our efforts to test ActiveMQ Artemis with
Slicify. We uncover one failure in Artemis’ replication protocol
which causes data inconsistency. We have reported the failure
using the Artemis issue tracking system [17].

A. Artemis’ Design

Figure 7 shows the ActiveMQ Artemis system architecture.
Artemis consists of producers, brokers, and consumers. Bro-
kers are the middleware, facilitating communication between
message producers and consumers. Producers send messages

Producer e

Broker Consumer

Passlve Backup Backup
Broker Broker Broker

Fig. 7: ActiveMQ Artemis Failure

to named addresses, which are stored in a queue before being
served to consumers.

Replication. ActiveMQ Artemis supports replication for
higher availability. In the replicated configuration, Artemis
uses one live broker to serve all producers and consumers
requests. The system can have one or more backup brokers.
Backup brokers are not active.

Fault Tolerance. One of the backup brokers is selected to
execute in “passive mode”. All messages are replicated to this
passive backup. This replication is asynchronous and does not
cause any blocking on client requests. To successfully become
a passive broker, a broker needs to be connected to the majority
of brokers in the cluster. Once a passive broker is successfully
chosen, it begins monitoring the live broker via heartbeats. The
live broker heartbeats all brokers in the cluster. If the passive
broker misses a series of heartbeats from the live, it assumes
the role of the live.

B. Artemis’ Partition Tolerance

We use Slicify to test the produce and consume operations
on ActiveMQ Artemis. We deploy Artemis v2.30.0 on a five
node cluster. Figure 7 shows the cluster architecture.

Failure Discussion. If a partition cuts the communication
between the live and passive brokers, the passive broker will
miss the live’s heartbeats and assume that it has crashed. It
will then start acting as a live broker, serving requests. Thus,
the system has two live brokers serving the same addresses.
The two live brokers do not synchronize their data as they
are unaware of each other. Consequently, consumers may not
receive all messages sent to an address or may receive different
sets of messages when subscribed to the same address.