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Abstract—Serverless computing is rapidly growing area of
research. No standardized benchmark currently exists for eval-
uating orchestration level decisions or executing large server-
less workloads because of the limited data provided by cloud
providers. Current benchmarks focus on other aspects, such as
the cost of running general types of functions and their runtimes.

We introduce OrcBench, the first orchestration benchmark
based on the recently published Microsoft Azure serverless
data set. OrcBench categorizes 8622 serverless functions into 17
distinct models, which represent 5.6 million invocations from the
original trace.

OrcBench also incorporates a time-series analysis to identify
function chains within the dataset. OrcBench can use these to
create workloads that mimic complete serverless applications,
which includes simulating CPU and memory usage. The modeling
allows these workloads to be scaled according to the target
hardware configuration.

Index Terms—benchmark, serverless, cloud, modeling

I. INTRODUCTION

The serverless paradigm has seen a growth in popularity

over the last few years [1, 10] with AWS seeing a 209% in-

crease in functions executed in 2020 [11]. Serverless simplifies

service deployment by shifting much of the infrastructure re-

sponsibility from developers to the cloud provider. Developers

focus on the functionality of their applications while the cloud

takes care of most of the deployment challenges.

Building a cost efficient serverless platform is challeng-

ing because developers are only charged for the resources

used during a function’s execution. Offloading the application

deployment and management from developers to providers

introduces complex research challenges including resource

management, auto-scaling, workload consolidation, storage

systems, billing, and orchestration. A benchmarking tool that

simulates real workload characteristics is essential to explore

these frontiers.

There are currently no benchmarking tools that capture the

characteristics of real serverless workloads. Previous efforts

resorted to building tools that were limited by the lack of

publicly available data from serverless providers. These tools

provide performance and cost estimates for running a server-

less application on a given cloud platform [2, 7], or provide

a synthetic set of functions that represent applications within

the serverless paradigm [4].

We present OrcBench, a serverless workload generator

that generates data center workloads that model the recently

This research is supported by grants from NSERC and WHJIL.

released Microsoft Azure dataset [14]. OrcBench generates

workloads which mimic the interarrival time, resource usage,

and execution times of the real world Azure traces. OrcBench

supports varying cluster sizes and workload intensity, and can

be used to generate complete serverless applications that chain

multiple functions.

The modeling of Azure traces is challenging because of two

reasons. First, the traces do not include the exact invocation

time, instead, batching all invocations at minute level gran-

ularity. Second, the dataset contains 52 thousand functions

and a total of 8.8 billion function invocations over a two

week period. Third, there are many applications with different

interarrival patterns and resource usage.

To accurately model these functions, we group them based

on their interarrival times using EP-Means clustering [3]. EP-

Means clustering groups the empirical cumulative distribution

functions (ECDF) of each function’s interarrival times. Clus-

tering this way allows us to group similarly behaving functions

together. We use the centroid of each cluster as a representative

function for its group.

These representative functions are used in place of the

hundreds to thousands of functions in a cluster. Each group

also has a probability distribution for both CPU and memory

constraints. When a user requests a simulated function this

underlying distribution is sampled to give each function how

much memory and CPU to consume.

Clustering treats each function independently without con-

sidering the relationships between functions. An application

may consist of multiple functions that form a chain that is

executed in series. We use time-series analysis to discover the

relationships between functions within each application and

allow us to model these chains.

OrcBench grouped 8622 functions into 17 distinct groups,

and the models produced from these groups were used to

generate an equivalent number of synthetic functions and

traces. These 8622 simulated functions invoked 5.6 million

times over 30 minutes with an average error rate of 15%. A

major source of error comes from extrapolating sub-minute

behavior from the one minute resolution timestamps in the

Azure data set. Our two highest invoked models (representing

113 functions) accounted for 2.8 million invocations while

having only an average error rate of 4.7%. The remaining

functions were rarely invoked or timer based functions that

were excluded from our modeling.
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II. OVERVIEW OF THE MICROSOFT AZURE TRACES

The Microsoft Azure dataset [8] is a collection of 52

thousand functions which were invoked 8.8 billions times

over a 14 day period. The three main objects in the data

are functions, applications and owners which are identified

through anonymous hash IDs. Owners can own multiple appli-

cations, and applications can be composed of many functions

potentially invoking each other to form function chains. This

captured data is broken up into three major parts: a time-series

of invocations, execution time, and memory usage.

Invocations: The invocation time-series contains the

number of invocations of a function at each minute of the

14 day trace.

Execution Time: The dataset contains the average exe-

cution time and a fixed set of percentiles for each function.

The execution time percentiles for the 0th, 1st, 25th, 50th,

75th, 99th, and 100th are included. The execution times do

not include the cold start of the function runtime.

Memory Usage: The data set includes the average mem-

ory usage for each application and is also broken into a

fixed set of percentiles. Unlike the other data that is recorded

per function, memory usage is recorded for the entire ap-

plication because Azure packages resource allocation bounds

for functions belonging to the same application together for

pricing [9].

III. METHODOLOGY

Modeling the Microsoft Azure dataset requires overcoming

three challenges: First, the dataset is temporal (See Figure 1).

Each function fluctuates throughout the day, often seeing a

steady rise over working hours (i.e., 9am to 5pm) and declining

when the workday is over.

Second, the anonymization of the data reduces assumptions

we can make based off additional information such as function

naming. This particularly affects our ability to determine

where functions exist within a chain.

Lastly, the traces of each function have low resolution

timestamps of minute granularity. The execution times of

most functions is far smaller (i.e., 90% of functions have an

execution time of less than 10 seconds [14]) than the one

minute resolution requiring us to extrapolate a model for the

execution behavior for timescales less than one minute.

It is important to translate the dataset from an invoca-

tion time series to interarrival time as this decouples time

from our model. However, the low resolution of the data

makes this difficult. For example, functions commonly have

large contiguous sections of non-zero entries in their traces,

which when naively averaged to calculate the interarrival time

leads to a single highly frequent data point. In a real world

application we would expect a far more continuous set of

data points in regards to interarrival time. Averaging would

also completely flatten our invocation rate, causing us to lose

important patterns that can occur during the trace.
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Fig. 1: Invocation counts of functions broken up by execution

time in milliseconds over the course of a day

A. Modeling Functions

The modeling of the function invocation rates can be broken

into three stages: trimming, data expansion and grouping.

a) Trimming: To reduce temporalness (Figure 1), we first

isolate the invocation data to a single, 30 minute window of

time between 12:00 PM and 12:30 PM. By sampling a smaller

window of time we reduce temporal behavior within our model

at the cost of accuracy. An incredibly short window would be

unaffected by temporal behavior but the model could miss

interesting patterns that may be expressed in the data. As this

window grows, the model captures more interesting patterns.

However, if its grows too large these patterns can be difficult

to detect because of temporal behavior. An outcome of choos-

ing this time window is that our models are a representation

of the workload at that specific time. For example, models

created around peak hours invoke functions more frequently

than models created from an earlier or later time window.

We then trimmed the data to contain only functions that

were invoked at least 10 times during the selected 30 minute

time period and also excluded functions triggered by timers.

Timer functions can be trivially modeled and rarely invoked

functions lack data for proper modeling.

After trimming we split the data into the top 1% of highly

invoked functions and the remaining functions. We model

these two groups using the same techniques but separately.

Clustering highly invoked functions with lesser ones mask the

interesting behavior of these infrequently invoked functions.

The data was further split between weeks, with the first

week being used for modeling while the second was used

for evaluation. We excluded weekends as outliers as functions

exhibited very different behavior.

b) Data Expansion: The next step is to translate our

invocation traces to interarrival time. Translating from in-

vocations per minute to interarrival time makes our models

independent of each minute. This translates our model from
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a function telling us the number of invocations to expect at

a given minute to how long we should expect until the next

invocation.

As previously stated, if we naı̈vely average our traces to

calculate our interarrival times, we are left with very few

data points for modeling. This also has the disadvantage of

flattening each function that causes the loss of interesting

patterns in the data. We can extract more data points if we

make an assumption that for any given function, the amount

of invocations at any given minute is independent to any other

minute within the same function.

The assumption of minute to minute independence allows

us to instead view each minute in the invocation data as a

Poisson process. We then can generate as many data points as

invocations by using each minute as a hyper parameter to the

Poisson distribution. The sampling of this distribution allows

us to transform a discrete dataset into a continuous one, which

better represents a realistic invocation pattern.

We believe this assumption to be sound as this stage of

the modeling only focuses on each individual function rather

than relationships between functions. We could not make this

assumption between two minutes of two separate functions as

they may belong to the same application and one function may

trigger another during its execution.

c) Grouping: We then create empirical cumulative dis-

tribution functions (ECDF) for each function with this newly

expanded interarrival data. The ECDF is a model of a function

which is then grouped to form clusters with other similarly

shaped functions. A cluster centroid is chosen that is the model

which replaces all functions of the cluster.

We cluster the functions using EP-Means that clusters

similar ECDFs together. However, a challenge occurs when

clustering on the interarrival times. Specifically, distances

between interarrival times is not representative of the behavior.

For example, two functions that have a constant interarrival

times of 0.01 s and 0.1 s seem close, but have a 10× difference

in invocation frequency.

To remedy this we use EP-Means clustering on the inverse

of the interarrival times. We create ECDFs of this frequency

data and use EP-Means to retrieve each grouping. From here

we translate back to interarrival time and re-calculate the

centroids of each group.

d) Sampling: Once models are created, we now face the

challenge of properly sampling a function that represents many

functions. If we were to sample our created model once for

each of its represented functions, then at any given minute we

would likely just see the average of the model. To overcome

this, OrcBench allows for a hyper-parameter (N ) which sets

how many functions a model is used for, which we call the

sampling group.

We then randomly spread invocations for each function

being represented within the sampling group throughout the

range of the sampled interarrival time (See Figure 2). Although

we are modifying the interarrival time for that set of invoca-

tions, if we sample the interarrival time and randomly place
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0 0.5

Fig. 2: An example of sampling from an ECDF of a model

with a hyper-parameter of N = 3, and how we spread

invocations within a sampled interarrival time. Each vertical

line on the timeline from 0s to 0.5s represents a separate

function.

these invocations, then the average interarrival time would

trend towards the initial sampled time.

B. Function Chaining

A distinguishing characteristic of serverless computing

workloads is the invocation dependency between serverless

functions within the same application. An application often

includes multiple functions that invoke each other creating

a call graph. Our goal is to generate workloads that mimic

complete serverless applications and their call graphs.

The Azure traces identify functions that are part of the same

application, however, they do not provide information about

the application call graph. Ideally, one can infer the call graph

through the ordering of invocation timestamps. Unfortunately,

this approach is not possible using the Azure traces because

of the low resolution of the trace.

Our insight is that a function that experiences a change

in the invocation count from one minute to the next should

result in an proportional change in the invocation counts of any

function it calls. This does not hold all the time, e.g., a function

that conditionally calls one of two functions. However, in

this case, the callee should see an increase in invocations

proportional to the conditional branch.

We apply the Spearman correlation coefficient to each

function’s trace, which is a time-series of invocations. The

coefficient determines how strongly two functions within an

application are tied to each other.

a) Function Fan-out Ratio: A single function may call

other functions many times. For example, a MapReduce style

data analytics application may call multiple map functions. To

identify such application structures, we examine function call

105



2a49d

44e4c

44e4c

44e4c

e8c47

e8c47

e8c47

07c53

07c53

HTTP

Queue

Timer

(a) Example of an execution graph (application id:
9cb9a). The graph includes four processing stages. Two
instances of function 07c53 are correlated with three
invocations of function e8c47. All functions are trigger
by queue events.
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(b) Example of an execution graph (application id:
88946) with three functions.

Fig. 3: Examples of function graphs. Circles represent func-

tions and the number in the circle are the function ids in the

Azure trace. The circle colors indicate the trigger type.

ratios. Function call ratios is the amount a caller function calls

a callee.

The observed call ratio may vary over time. We start

by recording the ratio of invocations between all pairs of

correlated functions at each minute, then use the most common

ratio for each function pair across the dataset. Figure 3 shows

two example graphs found using this technique. Figure 3a

shows an application with a fan out of three. Figure 3b shows

an application that is composed of three functions where

function 88946 is correlated to functions 2fd10 and be9af.

b) Pruning the Call Graph: Finding the calling order is

difficult because of the minute granularity. We can view our

application as firstly starting as fully connected graph and we

use several heuristics to eliminate edges from this graph. These

heuristics makes the assumption that applications will consist

of a single root function and the call graph contains no cycles.

We use three heuristics to remove edges until a root function

is identified:

First, we identify if one of the functions is a possible root

through its trigger type. For instance, a function could be the

only function triggered by an HTTP event while the rest are

triggered by orchestrator events. Orchestrator events can only

occur through other functions.

Second, we analyze the time series to find instances where

an application execution is split over two minutes. The func-

tion called in the first minute is identified as the caller function,
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Fig. 4: Example CPU and memory histograms which back

each model for generating function stubs.

allowing us to remove the backwards edge between the two

nodes in the graph.

Third, we start at edges in the graph that have an identified

direction and propagate the direction outwards to identify

candidate roots. We continue doing this with other identified

edges to eliminate possible candidates. Once all edges are

exhausted, the root node or the list of candidates is returned.

c) Application Workload Generation: We now have a

groups of applications and their root functions. A user can

choose one of these applications to use for their workload. If

more then one candidate root is attached to the application

the user must select one. We associate these root functions to

their model from §III-A to generate function invocations. On

each invocation, OrcBench simulates the execution of the call

graph of the application and records the trace.

Users can further get OrcBench to generate function stubs

for their application. OrcBench does this by sampling the

underlying histogram of CPU and memory data of the root

model (See Figure 4 as an example). We found no strong

correlation between CPU time and memory when looking at

each of our models, so we can sample these histograms to help

generate our synthetic functions. These samples are then input

into a template function, which when invoked, will allocate

memory and execute for the specified amounts.

IV. EVALUATION

Our evaluation examines the following questions:

• RQ1: How accurate is the individual function traces

created by OrcBench?
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point on this graph represents a mode, with the Y axis repre-
senting the percentage error this model contributes to the overall
workload per percentage of work done by the workload, and the
X representing how much of the overall workload the model
contributes to.

Fig. 5: Error Rates within the OrcBench Models

• RQ2: How accurate are the function chains discovered

by OrcBench?

In §IV-A we evaluate how close our models are to each

of the functions we are modeling and how much each model

contributes to the total error. Lastly, in §IV-B we evaluate an

inferred application chain.

A. Models

a) Generated Model Traces: Figure 6 shows example

traces generated by OrcBench which compares the invocation

data to that of its model. We compare the model to the

second week of the dataset. As previously stated, we use a

hyper-parameter for the number of functions each model will

represent during the trace. All evaluations were done with

N = 10.

b) Model Error Rate: Our clustering found 17 distinct

models which represent a total of 8622 functions, with a

workload being scaled to one that matches the Azure dataset

executing 5.6 million invocations over a 30 minute period.

We examined our results to determine the following:

• How much error does each model have relative to the

group of original functions the model is representing?

• How much error do models have relative to each other?

We simulated a trace using each model and calculated the

mean squared error (MSE) between the simulated trace and

each original function trace within its group. We added this

error to a sum then normalized it with every other model.

We then normalized the total invocations the model con-

tributes to the error. This is the ratio of the normalized error

to the normalized model invocations, i.e., how much error a

model contributes per percentage of the total workload. Fig-

ure 5b shows this value for every model. Note that many higher
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Fig. 6: Example traces of our models which have been scaled

to the number of functions to the functions they originally

represent. We compared these modeled functions to the sum

of the traces of the original functions.

error models represent less than 1% of the total workload.

Figure 5a shows how much total error accumulated during

the course of a 30 minute run. We aggregate the total MSE

between the model trace and each function trace.

We see a trend with the error that shows models which

represent a a larger weight of the overall workload have lower

error. This occurs as these models have far more data points

to create a better fitting function leading to a more refined

centroid being created during clustering. Further, as more

function invocations occur within an individual minute the

extrapolated Poisson model used for each minute becomes

more accurate. The average absolute error for all of our models

is 15%.

B. Function Chaining

We evaluated a discovered application call graph using a

simulated call chain. We first selected an application with an

identified root and attach its model. We provide the structure of

the call chain and execution times for each function within the

application. The simulator works by executing callee functions

after the caller function completes. We consider the fan-out

ratios when invoking the following functions.

The trace is recorded and then compared to the original

function invocation traces of functions within the application.
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Our discovered application was found to have a 6% average

error rate when compared to the original application trace.

V. RELATED WORK

Work within serverless computing that focuses on orches-

tration infrastructure [5, 6, 12, 13] often uses open source ap-

plications to evaluate and compare their designs. The solutions

focus on individual applications and their latency/throughput.

Due to the lack of any global workload benchmark, readers

are left to assume how these design decisions affect the

infrastructure as a whole.

Benchmarks like FaaSdom [7] and SeBs [2] focus on bench-

marking cloud providers themselves to give insights into each

cloud provider’s expected function runtime and cost. These

benchmarks provide a strong basis for micro benchmarks over

a larger workload based one like OrcBench.

VI. CONCLUSION

In this paper we introduce OrcBench, a serverless workload

and synthetic function generator. We provided the first orches-

tration level benchmark, which allows researchers to better

study serverless environments.

OrcBench’s modeling approach allows for workloads to be

scaled as needed to meet hardware goals. When compared

to the original Microsoft Azure data, OrcBench was able to

produce models which represent 8622 functions and invoke

5.6 million times over a 30 minute period with an average

error of 15%. OrcBench uses various techniques to infer sub-

minute behavior of its functions to overcome the original

data sets low resolution traces. OrcBench can be found at

https://github.com/rcslab/orcbench.
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