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Abstract—While numerous Content-Defined Chunking (CDC)
algorithms exist for data deduplication, their relative perfor-
mance has not been analyzed in the presence of low-entropy
induced byte-shifting. This paper explores and evaluates hash-
based and hashless CDC algorithms in the presence of low-
entropy data regions, using synthetic datasets. Our evaluation
shows that modern CDC algorithms are poor at handling low-
entropy blocks when the block sizes are small and that their
low-entropy detection ability depends upon the expected average
chunk size.

Contrary to previous studies focusing on conventional byte-
shifting, hash-based algorithms achieve poor space savings com-
pared to their hashless counterparts when low-entropy induced
byte-shifting is involved. This can be explained by the greater
variability in chunk sizes and the higher percentage of artificial
boundaries they exhibit in the presence of these regions. All of
these factors together highlight the need for specialized CDC
algorithms to detect and eliminate low-entropy data blocks
during the deduplication process.

Index Terms—Data Deduplication, Content-Defined Chunking,
Low-Entropy, Storage Systems, Cloud Computing

I. INTRODUCTION

The amount of data in the digital world is continu-
ously growing; the global data production in 2020 was 64.2
zettabytes and is expected to exceed 180 zettabytes by 2025
[1]. Cloud-storage providers utilize numerous mechanisms to
cope with this data influx, such as distributed file systems
[2], [3], data compression [4] and data deduplication [5],
[6]. Previous studies have shown that a large amount of
data stored on the cloud is redundant [7]. Data deduplication
reduces storage requirements by identifying these redundant
copies and avoiding their storage and transmission, conserving
both storage space and network bandwidth [7]–[9]. Data
deduplication consists of multiple phases [5], the first of
which is file chunking. File chunking divides the source data
into smaller chunks before deduplicating them, as chunk-level
deduplication is more effective than file-level deduplication
[8].

Content-Defined Chunking (CDC) algorithms are used to
perform file chunking. Numerous chunking algorithms [10]–
[13] exist in current literature, each offering different levels
of deduplication space savings and throughput. There are
two categories of CDC algorithms; hash-based and hashless
algorithms. Hash-based algorithms, such as Rabin’s chunking

[13] and FastCDC [11], use a rolling hash function to deter-
mine chunk boundaries while their hashless counterparts, such
as Asymmetric Extremum (AE) [10] and Rapid Asymmetric
Maximum (RAM) [12], utilize local minima / maxima.

While studies in the past [9], [14] have analyzed the
performance of CDC algorithms in datasets with conventional
byte-shifting, they do not examine their performance in the
presence of low-entropy data blocks. Low-entropy blocks
contain long sequences of a single repeated byte or pattern.
Our analysis shows that low-entropy blocks are prevalent in
real-world datasets, amounting to 10-30% of the total size
depending upon the dataset characteristics (§III). Efficient
chunking algorithms should be able to handle these low-
entropy regions by isolating and eliminating them, achieving
high deduplication ratios.

In this paper, we examine four state-of-the-art CDC al-
gorithms, evaluating their performance and effectiveness on
datasets with low-entropy regions. We compare their perfor-
mance under scenarios with conventional and low-entropy
induced byte-shifting. We evaluate each algorithm using four
metrics: space savings achieved, chunking throughput, chunk
size variance and artificial boundary percentage.

Our analysis shows that the ability of modern CDC algo-
rithms to detect and eliminate low-entropy blocks is poor and
dependent upon the block size and the expected average chunk
size. Modern CDC algorithms cannot detect and eliminate low-
entropy blocks of small sizes, resulting in poor space savings.
This highlights the need for chunking techniques specialized
in low-entropy elimination. At large block sizes, contrary to
previous studies focusing on datasets with conventional byte-
shifting [11], we find that AE [10] is better at deduplicating
data with high levels of low-entropy induced byte-shifting.
This is because hashless algorithms such as AE [10] and RAM
[12] possess lower chunk size variance and artificial boundary
percentages when handling such data (§V).

The rest of the paper is organized as follows: §II pro-
vides necessary background and §III motivates our work.
§IV describes our methodology and provides details about
the synthetic datasets we use. §V presents the evaluation of
the state-of-the-art CDC algorithms. §VI introduces additional
related work and §VII concludes our discussion.
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Fig. 1: Data deduplication workflow.

II. BACKGROUND

In this section, we discuss relevant background information
about deduplication, chunking algorithms and low-entropy
data regions.

A. Data Deduplication

Data deduplication [6] helps optimize storage efficiency
within large-scale digital storage systems by eliminating re-
dundant data. The major steps involved in the deduplication
process are shown in Fig. 1.

i. File Chunking: Files are divided into smaller parts called
chunks using chunking algorithms.

ii. Chunk Hashing: Chunks are hashed using a collision-
resistant hashing function (such as SHA-1 [15]) to gen-
erate unique fingerprints.

iii. Fingerprint Indexing: Fingerprints are compared against
an existing database of previously observed fingerprints.
A duplicate fingerprint indicates a duplicate chunk, which
can be safely eliminated.

iv. Data Storage: Non-duplicate chunks are stored and their
fingerprints are added to the fingerprint database.

File Chunking. File chunking is the first step in the deduplica-
tion pipeline and is a critical stage in the deduplication process
[8]. Files can be sliced into either fixed-size or variable-
size chunks. In fixed-size chunking, files are divided into
chunks with equal predefined sizes. While this approach is
simple, it achieves poor space savings due to the boundary-
shift problem [13]. The boundary-shift problem causes all the
chunk boundaries to shift when bytes are added to the data,
resulting in completely new chunks and poor space savings.

On the other hand, deduplication systems in production use
Content-Defined Chunking (CDC) algorithms to divide files
into chunks based on data characteristics, effectively solving
the boundary-shift problem. However, as this requires scanning
each file in its entirety, it is slower than fixed-size chunking.
Chunking throughput represents the speed at which a CDC
algorithm can divide source data into chunks.

Chunking algorithms impact deduplication efficiency as
well. Tuning chunking algorithms to generate larger chunks
can reduce indexing and metadata overheads while smaller
chunk sizes can enhance the space savings achieved by dedu-
plication.
CDC Algorithms. Content-Defined Chunking (CDC) algo-
rithms work by sliding a window across the source data.
When the data within the window matches certain target
characteristics, they insert chunk boundaries to divide the data
into chunks. CDC algorithms can be classified into hash-
based and hashless algorithms. All chunking algorithms insert
artificial chunk boundaries when content-defined boundaries
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Fig. 2: Hash-based CDC algorithms.

cannot be found before a maximum chunk size is reached
[11], [13].

As shown in Figure 2, hash-based algorithms slide a fixed-
size window over the source data stream, one byte at a
time. With each slide, the hash value of the data within the
window is calculated using a rolling hash algorithm. Whenever
this hash value matches a target value, a chunk boundary is
inserted. Examples of hash-based algorithms include Rabin’s
chunking [13] and FastCDC [11]. These algorithms insert a
chunk boundary when the lower n bits of the window’s rolling
hash value equal zero. We note that the hashing algorithms
used here differ from the collision-resistant algorithms used
for fingerprint indexing.

On the other hand, hashless algorithms treat each byte
within the window as a separate value, and insert chunk
boundaries based on local minima / maxima. Figure 3 shows
the operational procedure of Asymmetric Extremum (AE)
[10]. AE slides a fixed-size window over the data and inserts
chunk boundaries when the target byte i.e. byte at the head
of the window is a local maxima / minima. Figure 4 shows
the operational procedure of RAM [12]. RAM also slides a
fixed-size window over the data, inserting chunk boundaries
when the byte immediately outside the window (Target Byte
in Figure 4) is at least as large as the maximum valued byte
within.

B. Data Entropy

Entropy, borrowed from information theory [16], measures
the randomness or variance within data. Claude Shannon’s
work [17] proposed foundational steps for the understanding
of how entropy influences the processing and transmission
of data. We use this information to identify low-entropy data
regions. Low-entropy regions are data segments characterized
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Fig. 3: Asymmetric Extremum (AE).
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Fig. 4: Rapid Asymmetric Maximum (RAM).



TABLE I: Low-entropy data regions in real datasets.

Dataset Size Description LE %
VDI 122 GB Virtual Desktop Infras-

tructure images [20]
27.43%

LNX 65 GB 160 Linux kernel distribu-
tions in TAR format [21]

9.87%

by high predictability and redundancy, like repeated bytes or
patterns [18].

These regions play a key role in data deduplication; as these
regions have low variability, they are prime candidates for
elimination. While limited efforts have been previously made
to study their impact on deduplication [10], their effect on
CDC algorithms has not been extensively studied.

III. MOTIVATION

Low-entropy data regions are a common occurrence in many
real datasets. For instance, virtual machine disk images (VDI)
have a large amount of low-entropy. as empty regions are
represented by a single repeated byte value (such as ’0’). Table
I shows the percentage of low-entropy regions in two diverse
datasets. Note that a minimum of 10 adjacent occurrences of
a byte are required for a region to be classified as low-entropy
in the table.

Comparing CDC Algorithms. A plethora of CDC algo-
rithms exist within previous literature [10]–[13], [19]. Pre-
vious studies [9], [14] have compared these algorithms us-
ing evaluation metrics such as space savings and chunking
throughput. However, none of the studies analyze the impact
of low-entropy regions on CDC algorithms, instead focusing
on datasets with conventional byte-shifting. As low-entropy
regions are prevalent in real datasets, the motivating factor
behind our study is to quantify their impact on CDC algorithms
and compare it to the impact of conventional byte-shifting.

IV. STUDY DESIGN

As shown in §III, low-entropy data regions are common
in real datasets. The primary objective of our paper is to
comprehensively study the impact of low-entropy data regions
on data deduplication. In order to assess the impact of byte
shifting caused by low-entropy regions (i.e. repeated byte
patterns) and compare it against conventional byte shifting (i.e.
random bytes), we generate synthetic datasets containing equal
amount of low-entropy and conventional byte shifts (§IV-A).
We compare the performance of modern CDC algorithms on
these datasets using the metrics discussed in §IV-B.

A. Synthetic Datasets

To compare the impact of byte shifting caused by low-
entropy regions to conventional byte shifting, we generate
two kinds of synthetic datasets. We generate a base dataset
of multiple files filled with uniformly random bytes. We then
insert blocks of data at uniformly random locations within
these files, to mimic data insertion in real datasets [22]. Within
the first dataset, inserted data blocks contain random bytes to
represent conventional byte shifting. For the second dataset,

ABVP%1&25JFS*569^TEEOTUCFYT
%$JL(*^73157HJKOPP…RWCBMKD
JYJKWMMCWPMUYQFYUBVQHBJ
EFNEWFIOPYT4ZXCVNATYMD&%^
DKM…26GWRETB*MN%RT@TH12H
QP4OFDFQRSKOFMNVWQPOFDK4
…..QWSCO#46^&*9210DA…K TP9#U

(a) Conventional

ABVP%1&25JFS*569^TEEOTUCFFF
FFFFFFFFFFFFFFFFF…FFFFM
KDJYJKWMMCWPMUYQFYUBVQH
BJEFNEWFIOPYT4444444444444444..
.444WRETB*MN%RT@THT12HQP4O
FDFQQRSKOFMNVVWWQPOFDK4
…..KKKKKKKKKK…KKKKKKTP9#U

(b) Low-Entropy Induced

Fig. 5: Datasets with byte-shifting.

inserted blocks contain repeated byte sequences and patterns
to represent byte-shifting caused by low-entropy data regions.
Figure 5 shows an example of the conventional and low-
entropy byte-shifted datasets arising from the same base data.

We vary the following parameters to generate conventional
and low-entropy byte-shifted datasets possessing different
characteristics:

1) Block size: Byte-shifting is caused by blocks of data
inserted within the original data. We vary the size of
these inserted blocks and examine their impact on CDC
algorithms.

2) Byte-shift Level: We define the ratio of byte-shifting
(conventional or low-entropy induced) as the byte-shift
level within the data. The formula we use to calculate
byte-shift level is:

Byte-shift Level =
Inserted Data Size

Total Data Size
(1)

We choose to generate synthetic datasets for our study
as it is difficult to achieve fine-grained control over these
characteristics in real world datasets.

B. Evaluation Metrics

Modern CDC algorithms can be tuned to generate chunks
with different average sizes. We experiment with configu-
rations that generate average chunk sizes of 4-16 KB. We
quantify the impact of low-entropy regions on these algorithms
using the following metrics:

1) Space Savings: The space savings achieved by using the
CDC algorithm within a deduplication system (§II-A).

Space Savings =
Original Size − Deduplicated Size

Original Size
(2)

2) Chunking Throughput: The rate at which the CDC
algorithm can divide source data into chunks.

3) Chunk Size Distribution: Frequency distribution of
chunk sizes. Higher chunk size variance is typically
associated with lower deduplication efficiency [9], [14].

4) Artificial Boundary Percentage: The percentage of
artificial chunk boundaries (§II-A) inserted by the CDC
algorithm.
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Fig. 6: Space savings comparison.

V. EVALUATION AND INSIGHTS

We compare four state-of-the-art CDC algorithms. We eval-
uate their space savings, chunking throughput, chunk size
variance, and artificial boundary percentages (§IV). For each
metric, we compare low-entropy induced byte shifting to
conventional byte-shifting and also examine the impact of
byte-shift levels and block sizes.

Alternatives. We compare the following CDC algorithms:
• AE: The Asymmetric Extremum (AE) [10] algorithm. We

use AE-Max i.e. the target byte is a local maximum.
• FastCDC: The rolling hash-based FastCDC [11] algo-

rithm. We use a normalization level of 2.
• Rabin: Rabin’s chunking algorithm [13].
• RAM: Rapid Asymmetric Extremum (RAM) [12].
We use minimum and maximum chunk sizes of 0.5× and

2× the average chunk size. Unless otherwise noted, we use
an expected average chunk size of 16KB.

Implementation. All four CDC algorithms have been im-
plemented in C++ using 150 − 300 lines of code each and
integrated into DedupBench [9]. We implemented the tool
to generate synthetic datasets (§IV-A) using ∼ 50 lines of
Python code. We use SHA-1 [15] as the collision resistant
hashing function to generate the chunk fingerprints used in
space savings calculations. We use the SHA-1 implementation
provided by OpenSSL’s libssl API [23]. Our code is
publicly available on GitHub [24].

Testbed. We use a c6525-25g [25] machine from Cloud-
Lab Utah [26] for our experiments. The machine is an AMD
EPYC Rome server containing a 16 core AMD 7302P with
hyperthreading, 128GB of RAM and a 25 GBps Mellanox
NIC. We use Ubuntu 22.04. We use gcc v11.4.0 and libssl
v3.0.2 to deploy our code.

A. Deduplication Space Savings

We evaluate the space savings achieved by the four CDC
algorithms. We use an expected average chunk size of 4KB
and a block size of 16KB for this experiment.

Low-entropy vs conventional byte-shifts. Figure 6a il-
lustrates the differences in space savings achieved by CDC
algorithms on synthetic datasets with equal percentages of
conventional and low-entropy induced byte-shifts. CDC algo-
rithms achieve higher space savings in the presence of byte-
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Fig. 7: Impact of inserted block size on space savings of CDC
algorithms.

shifts induced by low-entropy regions compared to conven-
tional shifts.

This is because the low-entropy data regions have repeating
patterns and bytes, which can be detected and eliminated
by isolating them into separate chunks. AE [10] achieves
the highest space savings in the presence of low-entropy
induced byte-shifts, performing slightly better than other CDC
algorithms.

Byte-shift level. Figure 6b shows the space savings achieved
by all CDC algorithms with increasing low-entropy induced
byte-shift levels. At low byte-shift levels, FastCDC and Rabin
achieve the highest space savings among CDC algorithms,
similar to the results observed by previous studies on datasets
with conventional byte-shifting [11].

However, as mentioned above, low-entropy data regions can
be eliminated. When low-entropy induced byte-shift levels are
increased, AE [10] is the only algorithm which identifies and
efficiently eliminates these regions. This causes AE to achieve
higher space savings with increasing low-entropy induced
byte-shift levels, as shown in Figure 6b. Thus, in contrast
to previous studies using conventional byte-shifting [11], AE
is the optimal CDC algorithm to handle high levels of low-
entropy induced byte-shifts.

Block size. CDC algorithms exhibit increases in space
savings with increasing low-entropy block size i.e. they are
better at handling large block sizes over smaller ones. Figure
7 shows the space savings achieved with increasing block
sizes, for three different average chunk size configurations.
The low-entropy induced byte-shift level was fixed at 50% for
this experiment.

We note that in all three configurations, CDC algorithms
identify and eliminate low-entropy regions more efficiently
when the block sizes are higher. For instance, all algorithms
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achieve a space savings of ∼ 60% in Figure 7a with a block
size of 64KB but only 20-25% with a block size of 4KB. Thus,
modern CDC algorithms are poor at eliminating low-entropy
regions with small block sizes.

We also note that CDC algorithms only start identifying
and eliminating low-entropy regions when the block size is
greater than or equal to the expected average chunk size. Once
again, AE [10] can identify low-entropy regions at lower block
sizes than other CDC algorithms. Thus, the ability of CDC
algorithms to eliminate low-entropy byte-shifts is dependent
upon the expected average chunk size.

Finally, we note an interesting trend when comparing hash-
based and hashless algorithms with varying block size. At
lower block sizes, FastCDC and Rabin’s chunking achieve
better space savings than AE and RAM. However, as the block
size increases, this gap is quickly bridged. At higher block
sizes, AE achieves the best space savings among all CDC
algorithms. Thus, the optimal CDC algorithm to eliminate low-
entropy byte-shifts depends on the block size.

B. Chunking Throughput

Figure 8 shows the chunking throughput achieved by all
algorithms with different levels of conventional and low-
entropy induced byte shifting. The byte-shift level was set to
50% and the low-entropy block size was set to 16KB for these
experiments. All our results are the average of 5 runs and the
standard deviation was less than 5%.

Low-entropy vs conventional byte-shifts. All techniques
maintain their throughputs between equal levels of low-
entropy induced (Figure 8a) and conventional (Figure 8b) byte-
shifting. FastCDC [11] achieves the highest chunking through-
put among all the CDC algorithms, in line with previous
studies using datasets with conventional byte-shifting [11].

Byte-shift level. With increasing levels of low-entropy in-
duced byte-shifting (Figure 8a), FastCDC [11] exhibits slightly
lower chunking throughputs. This is because it needs to
scan larger amounts of data before finding chunk boundaries
(§V-D). The throughputs of other CDC algorithms remain
unaffected by byte-shift levels.

Block size. The throughputs of all CDC algorithms are
unaffected by block size.
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Fig. 9: Chunk size distributions (CDF) under low-entropy
induced and conventional byte-shifting.

C. Chunk Size Distribution

Within this section, we demonstrate the distributions in
chunk sizes exhibited by all CDC algorithms under con-
ventional and low-entropy induced byte-shifting. We use a
byte-shift level of 50% and a 16KB block size for these
experiments.

Low-entropy vs conventional byte-shifts. Figure 9 shows
the chunk size distributions exhibited by all CDC algorithms
under equal percentages of conventional and low-entropy
induced byte-shifting.

Hashless CDC algorithms exhibit no differences in chunk
size distributions between conventional and low-entropy in-
duced byte-shifts. AE (Figure 9a) and RAM (Figure 9d)
exhibit identical chunk size distributions in both cases.

Hash-based algorithms, such as FastCDC (Figure 9b) and
Rabin’s chunking (Figure 9c) on the other hand, exhibit differ-
ences in chunk sizes between low-entropy and conventionally
induced byte-shifts. Both algorithms produce larger chunk
sizes on average when low-entropy regions are involved. Their
chunk size variance is higher as well, partially explaining their
lower space savings in Figure 6a.

Byte-shift level and block size. While the chunk size
distributions vary with byte-shift level and block size, the
differences between hash-based and hashless algorithms re-
main the same as those outlined above. To ensure clarity, we
only present the results for the block size and byte-shift level
configuration above within the paper.

D. Artificial Chunk Boundaries

Modern CDC techniques insert artificial chunk boundaries
when content-defined boundaries cannot be determined within
a maximum size limit (§IV). A higher percentage of artificial
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chunk boundaries results in lower deduplication space savings.
Within this section, we examine the impact of low-entropy
regions on artificially inserted boundaries. We use a byte-shift
level of 50% and a block size of 16KB for this experiment.

Low-entropy vs conventional byte-shifts. Figure 10 shows
the percentage of artificial chunk boundaries inserted by
chunking techniques in the presence of conventional and low-
entropy induced byte-shifts. Hash-based CDC algorithms ex-
hibit a higher percentage of artificially inserted chunk bound-
aries in the presence of low-entropy induced byte-shifting.

This partially explains the space savings differences ob-
served in Figure 6a. This occurs because the rolling-hash value
fails to match the target value across the low-entropy regions,
as they are composed of repeating byte-sequences. Hashless
CDC algorithms do not suffer from the same drawback.

Byte-shift levels. With increasing low-entropy induced
byte-shift levels, all CDC techniques exhibit higher percent-
ages of artificial chunk boundaries, as seen in Figure 11a.
Hash-based algorithms suffer in particular, exhibiting much
higher artificial boundaries compared to their hashless coun-
terparts.

Block size. Block size impacts CDC algorithms in differing
ways. Hash-based algorithms once again suffer from much
higher artificial chunk boundaries over their hashless counter-
parts regardless of block size.

VI. RELATED WORK

Enhancing Deduplication Efficiency. There have been var-
ious efforts to increase the efficiency of the other phases within
data deduplication. StoreGPU [27] uses GPUs for hashing, in
order to improve throughput. SiLo [28] presents a scalable
deduplication system with minimal RAM utilization. These
are orthogonal to our work, as we target CDC algorithms for
file chunking.

Data Compression. Huffman coding [29] is a popular
entropy coding method, forming optimal prefix codes for data
compression. It creates a binary tree sorted by frequency, to
minimize byte redundancy by substituting input symbols with
shorter codes. Lempel-Ziv compression [30] speeds up the data
compression process by referencing the positions and lengths
of redundant data. These methods are typically used in tandem
with data deduplication, and are orthogonal to our work.
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Fig. 11: Artificial Chunk Boundary Comparison.

Delta Compression. DARE [31] is an approach that is
aware of deduplication and has low overhead for delta com-
pression. It uses information about adjacent duplicates to make
the process of resemblance detection and elimination efficient.
Furthermore, Ddelta [32] is a fast deduplication-inspired delta
compression method, improving the speed of both delta en-
coding and decoding through deduplication concepts while
maintaining the same compression ratio. These are orthogonal
to our work as we focus on data deduplication.

VII. CONCLUSION

While numerous studies exist targeting CDC algorithms,
they only focus on datasets with conventional byte-shifting.
Though low-entropy data blocks are prevalent in real-world
datasets, not much attention has been devoted to analyzing
their impact on CDC algorithms.

We present the first detailed analysis on the impact of low-
entropy induced byte-shifting on modern CDC algorithms.
Our analysis shows that modern CDC algorithms are poor at
identifying and eliminating low-entropy data blocks with small
block sizes. In addition, their ability to eliminate low-entropy
blocks depends upon the expected average chunk size. Finally,
the choice of optimal algorithm to handle low-entropy induced
byte-shifting is highly dependent on the byte-shift level and
block size. All of these together highlight the need for the
design of novel CDC algorithms to detect and eliminate low-
entropy blocks during the data deduplication process.
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