LoLKV: The Logless, Linearizable, RDMA-based
Key-Value Storage System

Ahmed Alquraan, Sreeharsha Udayashankar, Virendra Marathe,
Bernard Wong, Samer Al-Kiswany

University of Waterloo Oracle Labs

SR |
2 oRscL

Production-quality Key-Value Stores

* Leader-based consensus protocols = Strong consistency

CockroachDB @
log

i TiKV

Raft Paxos

ZAB Mu

ArangoDB 0 APUS DARE

Viewstamped
== etcd

AERORTIE Replication

FoundationDB

Shortcomings of Current Systems

3

Leader
4 Operation Log)
g ck W(k1) | W(K5) | W(k3)
J > Key-value Store
A ﬁ'] k1 X $
Write (K37-2) k5 Y S
L k3 Z P
v Jer
4 Operation Log) 4 Operation Log)
W(k1) | W(K5) | W(k3) W(k1) | W(K5) | W(k3)
Key-value 87 Key-value Store
k1 X k1 X
k5 Y kt Y
L k3 Z D L k3 Z D
Follower 1 Follower 2

Shortcomings of Current Systems

* Log-based replication
* Log is a serialization point
* Unnecessary data copying

Leader
4 Operation Log)
W(k1) | W(k5) € W(k3)

-~

Operation Log

W(k1)

W(k5)

W (k3)

N\

Key- value 87

Operation Log)
W(k1) | W(k5) | W(k3)
Key-value Store
k1 X
ks Y
k3 Z D

Follower 1

Follower 2

4

Shortcomings of Current Systems

* Log-based replication

* Log is a serialization point (" ck
* Unnecessary data copying J

* All replicas apply committed operations
* Work repetition on all replicas

Leader
4 Operation Log)
W(k1) | W(k5) € W(k3)

-~

Operation Log

W(k1)

W (K5)

W (k3)

Key-value Store

k1 X

Operation Log

~

W(k1)

W(k5) | W(k3)

Key-value Store

Follower 1

Follower 2
5

Shortcomings of Current Systems

* Log-based replication
* Log is a serialization point
* Unnecessary data copying

* All replicas apply committed operations
* Work repetition on all replicas

* Multiple single-threaded shards
* Inefficient for skewed workloads
* Resource fragmentation: separate
memory regions per shard

Yol Vol Va2
e

Replica 1
Shard 1 Shard 2 Shard 3
Leader Follower Follower
Replica 2
Shard 1 S 2 Shard 3
Follower " Wer Follower
Replica 3
Shard 1 Shard 2 Shard 3
Follower Follower Leader

LoLKV

A new linearizable RDMA-based KV Store

Shortcomings of Current Systems

* Log-based replication

* Log isa-serialization point r————s o A\ novel logless replication
° H—H—Heee&&a-Fy—el-a-t-a—eepyl-Hg-q_l_ ° Combines replication and apply

* All replicas apply committed operations

* Werlkrepetitiononalrepheas C——m— o P3ssive followers

* Multiple single-threaded shards
o Inafficiant for <l I Kload
° Regowee%-gmm* ¢ A nOVEI mU|ti‘threaded Shard dESign
memony-fegions per shard :

Design

* Leader-based system

* Two main components
* Storage

e Worker threads Client

apC

* RDMA-based system

e UD for communication with clients
* RC for communication between replicas

Leader
(. Storage) Replica2
(S t Store®
| Hash Table eerner 070, _ Storage _
' —J-*| objectl Segment |
I o !
! object 2 Store |,
: Hash I
o : I
: _N‘N‘ Table 1
I objectk |V [/ [/ “S——F==
N\ e e e e e e o —
i _ Storage _
/l: b l:::‘ Segment |
i— 1
° Store |
H Hash !
== Table I
ty ::::, ——===c—=c
e Replica3

Worker Threads

* Design Goals Leader
* Highly-concurrent design T e)
* Avoid sharding the key space among N SEEEES = -'-E'
threads .;iq “ I M i
& I
* Employs multiple worker threads . - ey
. |- , St e
e Each thread has its own RDMA resources > -

* Each thread serves requests for any key | —
* Run the consensus protocol .;iq - r ot ==
* Update the storage

Storage Design

* Design Goals
* Minimize RDMA communication
e Minimize contention between threads

* Storage
* Memory divided into segments
* Each segment stores a set of objects
* A segmentis owned by one thread at a time
* One RDMA Write to commit an operation

e Hash Table
* Stores pointers to objects in the storage
* A lock-freelinear probing hash table
* Shared between all threads
* One RDMA Write to apply an operation

Hash Table

Storage

([Segment

Segment 1

Metadata

object 1

Segment 2

Segment 3

object K

Segment N

LoLKV Write Request Path

Leader
(- Storage) Replica 2
. . \
* Put operations processing (HashTable SEEMeNtStore, _ Storage _
. . : 1" object 1 : Segment |i
* Replication phase @@ . hectz || Store !
: - I Hash I
* Local apply phase® N | | Table |
1 I/ U\l
 Remote apply phase® Client Ny Syl SE— !
] ‘\@ 7 _ Storage _
. r gtl @ o Segment |
S Put . Ll Store
H Hash
| |
I '] = e e e ==
o =
A g Replica

One RDMA Write for replication
One async RDMA Write for apply

11

Replication Phase Cuses o

Replica 2
Segment 1
Metadata
a, 1
Leader e
Segment 1
& Metadata
C N
A & |
\ Put (c) b, 5 Replica 3
Segment 1
l Metadata
’ a, 1

b, 5

12

Replication Phase Cuses o

Replica 2
Segment 1
Metadata
a, 1
Leader e
Segment 1
& Metadata
(L N
A & |
\ Put (c) b, 5 Replica 3
) Segment 1
Metadata
’ a, 1
key C
value | val
Thread 1 Metadata b, 5
>EA-nHm ° — sequence 6 P

13

Replication Phase Cuses o

Replica 2
Segment 1
Metadata
a, 1
Leader e
Segment 1 c,6
= Metadata \ |
< p. 3,1
A & |
\ Put (c) b, > Replica 3
c.6 Segment 1
l Metadata
’ a, 1
b, 5
c, b6

14

Replication Phase Cuses o

Replica 2

Segment 1
Metadata

a, 1

Leader

b, 5
Segment 1 c,6
= Metadata \ |
<"- a, 1
A & |
\ Put (c) b, > Replica 3
c.6 Segment 1
l Metadata
a, 1
b, 5
c, b6

15

Local Apply Phase

* The leader applies the operation
to its hash table

* Hashes the key to find the hash
table entry

* Terminates probing if
* Finds an empty entry

* Finds an entry pointing to the
same key

Leader
’ N
Segment 1
Hash Table Metadata
a, 1
t4 .
b, 5
C ptr p=———=—- c,6

Replica 2

Segment 1

Metadata

a, 1

b, 5

c, 6

Replica 3

Segment 1

Metadata

a, 1

b, 5

c, b6

Asynchronous Remote Apply Phase

* The leader updates followers
hash tables lazily
* Using RDMA Write

Leader

7

Hash Table

C_ptr

Replica 2

7

Hash Table

Segment 1)

Metadata

a, 1

b, 5

c_ptr

c, 6

Replica 3

7

Hash Table

C_ptr

Segment 1)

Metadata

a, 1

b, 5

c, b6

17

LoLKV is a Complete System

Concurrent writes

Fault tolerance
* Follower failure
* Leader failure
* Torn writes

Leader election protocol
Garbage collection protocol

Proof of correctness
e Proof sketch
* TLA+ model checking

18

Concurrent Writes to Different Keys =

Leader

N
Segment 1

* Objects are committed in parallel Metadata
Put (c) a, .

é’{i b, ...

c, ..

* Objects are applied in parallel N

Segment 2
Metadata

|
Put (d) —

R

d, ..

19

Concurrent Writes to Different Keys =" —"

Leader
4 N\
Segment 1
* Objects are committed in parallel Metadata
o - a, ...
Hash Table
. o étl b, ...
* Objects are applied in parallel A
. . Segment 2
e Hash table is updated using CAS —| d_ptr k. Mgetadata
* Handles concurrent access \~\ S o
RS
Y ——
L J

20

Concurrent Writes to Different Keys

Objects are committed in parallel

Objects are applied in parallel

Hash table is updated using CAS
 Handles concurrent access

If CAS fails, repeat linear probing

[Jused [JFree

Leader
Segment 1)
Metadata
) o < a, ...
Hash Table
étl b, ...
A c ... N
,/
,/
Ud
,/

-~ Segment 2
d=ptr N Metadat
C_ptr RN etadata

_ S P W, ...
\\\ t)
~ 2 7

\\

b | d ..

21

Concurrent Writes to the Same Key

* Incarnation Array
* Array of atomic counters

e Each Put has an incarnation number

%@ %@

Leader

[Jused [JFree

N
Segment 1

Metadata

Put (c)| a .50

étl b, ... 3

Segment 2
Metadata
| Put (c) jw, .., 17
a 2 2. 30
Key range [0, 4096) | [4096,8192)
Incarnation Number 100 115

.

22

Concurrent Writes to the Same Key

* Incarnation Array
* Array of atomic counters

e Each Put has an incarnation number

Leader

[Jused [JFree

N
Segment 1

Metadata

Segment 2
Metadata
Put (c) w, ..., 17

O
5 C 2] 2,30
5
=
Key range [0, 4096) | [4096, 8192)
Incarnation Number 100 115

.

23

Concurrent Writes to the Same Key

* Incarnation Array
* Array of atomic counters

e Each Put has an incarnation number

Leader

[Jused [JFree

N
Segment 1

Metadata
< 3, ..., 50

étl b, .., 3

Segment 2
Metadata
Put (C) W, ..., 17
z,.., 30

Key range

[0, 4096)

[4096, 8192)

Incarnation Number

101

115

.

24

Concurrent Writes to the Same Key =" —r=

Leader

N
Segment 1
Metadata

* Incarnation Array S
* Array of atomic counters §t1

e Each Put has an incarnation number Segment 2
Metadata

p W, ..., 17
e Orders Puts for the same key gtz > 30
c .. 102

Key range [0, 4096) | [4096, 8192)

Incarnation Number 102 115

\ J

25

Leader Election

* Any replica can become a leader

* The new leader might be stale for some threads

» Different threads replicate operations on different
majorities

» State synchronization brings the new leader up-to-date

LUl C ~vLUlIC

Evaluation

Alternatives (best configuration per system) Metrics

 DARE (8 shards) * Throughput

« APUS (7 shards) * Latency

* Mu (4 Shards) ¢ Scalab|||ty

* uKharon (4 shards)

Testbed

Workloads 12 machines in CloudLab
e 8-core CPU (2.1 Ghz)

* YCSB benchmark . 16 GB of RAM

* Different workload skewness * Infiniband network (56 Gbps)
 Mellanox CX3

e Different read-to-write ratios

Uniform Workload

* APUS requires two RDMA Writes m== LOLKV mmmm Mu == DARE APUS ms== ukharon
YCSB-A (50% Writes)

8]
o

* Mu and uKharon require one
RDMA Write

(o)}
o

* DARE requires two RDMA Writes

N
o

Latency - 99th %ile (us)
I
o

o

012345672829
Throughput (Mops)

LoLKV outperforms other systems in terms of throughput and latency

28

Skewed Workload

=@= oLV mem Mu =) DARE APUS mpmm yKharon

e Uniform write-only workload

> 2
* One popular shard §4 >~ 600"
Z 4] &
e Control the percentage of 5310 £ 400
operations served by that 5,5 B 2
shard 5 o S 2001
ch == S
0L, , , . 1 < 0 . . . |
U 30 50 70 90 U 30 50 70 90
Percentage of Operations (%) Percentage of Operations (%)

Other systems performance decreases with skewness
* Popular shard is overwhelmed

LoLKV efficiently handles skewed workloads

29

Conclusion

LoLKV is a low-latency, highly-concurrent, and linearizable object store

LoLKV adopts a novel logless design
* Eliminates the serialization point
* Eliminates unnecessary memory copy operations

LoLKV adopts a novel multi-threaded shard design
 Efficient for both uniform and skewed workloads
* Eliminates resource fragmentation

LoLKV outperforms state-of-the-art systems
* At least 1.7x higher throughput
* At least 20% lower latency
* Better scalability

	Slide 1: LoLKV: The Logless, Linearizable, RDMA-based Key-Value Storage System
	Slide 2: Production- quality Key-Value Stores
	Slide 3: Shortcomings of Current Systems
	Slide 4: Shortcomings of Current Systems
	Slide 5: Shortcomings of Current Systems
	Slide 6: Shortcomings of Current Systems
	Slide 7: LoLKV
	Slide 8: Design
	Slide 9: Worker Threads
	Slide 10: Storage Design
	Slide 11: LoLKV Write Request Path
	Slide 12: Replication Phase
	Slide 13: Replication Phase
	Slide 14: Replication Phase
	Slide 15: Replication Phase
	Slide 16: Local Apply Phase
	Slide 17: Asynchronous Remote Apply Phase
	Slide 18: LoLKV is a Complete System
	Slide 19: Concurrent Writes to Different Keys
	Slide 20: Concurrent Writes to Different Keys
	Slide 21: Concurrent Writes to Different Keys
	Slide 22: Concurrent Writes to the Same Key
	Slide 23: Concurrent Writes to the Same Key
	Slide 24: Concurrent Writes to the Same Key
	Slide 25: Concurrent Writes to the Same Key
	Slide 26: Leader Election
	Slide 27: Evaluation
	Slide 28
	Slide 29: Skewed Workload
	Slide 30: Conclusion

