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Production-quality Key-Value Stores

* Leader-based consensus protocols = Strong consistency
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Shortcomings of Current Systems
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Shortcomings of Current Systems

* Log-based replication
* Log is a serialization point
* Unnecessary data copying
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Shortcomings of Current Systems

* Log-based replication

* Log is a serialization point (" ck
* Unnecessary data copying J

* All replicas apply committed operations
* Work repetition on all replicas
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Shortcomings of Current Systems

* Log-based replication
* Log is a serialization point
* Unnecessary data copying

* All replicas apply committed operations
* Work repetition on all replicas

* Multiple single-threaded shards
* Inefficient for skewed workloads
* Resource fragmentation: separate
memory regions per shard
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LoLKV

A new linearizable RDMA-based KV Store

Shortcomings of Current Systems

* Log-based replication

* Log isa-serialization point r————s o A\ novel logless replication
° H—H—Heee&&a-Fy—el-a-t-a—eepyl-Hg-q_l_ ° Combines replication and apply

* All replicas apply committed operations
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Design

* Leader-based system

* Two main components
* Storage

e Worker threads Client

apC

* RDMA-based system

e UD for communication with clients
* RC for communication between replicas
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Worker Threads

* Design Goals Leader
* Highly-concurrent design T e )
* Avoid sharding the key space among N SEEEES = -'-E'
threads .;iq “ I M i
& I
* Employs multiple worker threads . - ey
. |- , St e
e Each thread has its own RDMA resources > -

* Each thread serves requests for any key | —
* Run the consensus protocol .;iq - r ot ==
* Update the storage




Storage Design

* Design Goals
* Minimize RDMA communication
e Minimize contention between threads

* Storage
* Memory divided into segments
* Each segment stores a set of objects
* A segmentis owned by one thread at a time
* One RDMA Write to commit an operation

e Hash Table
* Stores pointers to objects in the storage
* A lock-freelinear probing hash table
* Shared between all threads
* One RDMA Write to apply an operation
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LoLKV Write Request Path
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One RDMA Write for replication
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Replication Phase Cuses o
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Replication Phase Cuses o

Replica 2
Segment 1
Metadata
a, 1
Leader e
Segment 1
& Metadata
(L N
A & |
\ Put (c) b, 5 Replica 3
) Segment 1
Metadata
’ a, 1
key C
value | val
Thread 1 Metadata b, 5
>EA-nHm ° — sequence 6 P

13



Replication Phase Cuses o
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Replication Phase Cuses o
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Local Apply Phase

* The leader applies the operation
to its hash table

* Hashes the key to find the hash
table entry

* Terminates probing if
* Finds an empty entry

* Finds an entry pointing to the
same key
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Asynchronous Remote Apply Phase

* The leader updates followers
hash tables lazily
* Using RDMA Write
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LoLKV is a Complete System

Concurrent writes

Fault tolerance
* Follower failure
* Leader failure
* Torn writes

Leader election protocol
Garbage collection protocol

Proof of correctness
e Proof sketch
* TLA+ model checking
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Concurrent Writes to Different Keys =
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Concurrent Writes to Different Keys =" —"
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Concurrent Writes to Different Keys

Objects are committed in parallel

Objects are applied in parallel

Hash table is updated using CAS
 Handles concurrent access

If CAS fails, repeat linear probing
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Concurrent Writes to the Same Key

* Incarnation Array
* Array of atomic counters

e Each Put has an incarnation number
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Concurrent Writes to the Same Key

* Incarnation Array
* Array of atomic counters

e Each Put has an incarnation number
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Concurrent Writes to the Same Key

* Incarnation Array
* Array of atomic counters

e Each Put has an incarnation number
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Concurrent Writes to the Same Key =" —r=
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Leader Election

* Any replica can become a leader

* The new leader might be stale for some threads

» Different threads replicate operations on different
majorities

» State synchronization brings the new leader up-to-date
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Evaluation

Alternatives (best configuration per system) Metrics

 DARE (8 shards) * Throughput

« APUS (7 shards) * Latency

* Mu (4 Shards) ¢ Scalab|||ty

* uKharon (4 shards)

Testbed

Workloads 12 machines in CloudLab
e 8-core CPU (2.1 Ghz)

* YCSB benchmark . 16 GB of RAM

* Different workload skewness * Infiniband network (56 Gbps)
 Mellanox CX3

e Different read-to-write ratios



Uniform Workload

* APUS requires two RDMA Writes m== LOLKV mmmm Mu == DARE APUS ms== ukharon
YCSB-A (50% Writes)
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LoLKV outperforms other systems in terms of throughput and latency
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Skewed Workload
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Other systems performance decreases with skewness
* Popular shard is overwhelmed

LoLKV efficiently handles skewed workloads
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Conclusion

LoLKV is a low-latency, highly-concurrent, and linearizable object store

LoLKV adopts a novel logless design
* Eliminates the serialization point
* Eliminates unnecessary memory copy operations

LoLKV adopts a novel multi-threaded shard design
 Efficient for both uniform and skewed workloads
* Eliminates resource fragmentation

LoLKV outperforms state-of-the-art systems
* At least 1.7x higher throughput
* At least 20% lower latency
* Better scalability
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