
This paper is included in the
Proceedings of the 21st USENIX Symposium on

Networked Systems Design and Implementation.
April 16–18, 2024 • Santa Clara, CA, USA

978-1-939133-39-7

Open access to the Proceedings of the
21st USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

LoLKV: The Logless, Linearizable, RDMA-based
Key-Value Storage System

Ahmed Alquraan and Sreeharsha Udayashankar, University of Waterloo;
Virendra Marathe, Oracle Labs; Bernard Wong and Samer Al-Kiswany,

University of Waterloo
https://www.usenix.org/conference/nsdi24/presentation/alquraan

LoLKV: The Logless, Linearizable, RDMA-based Key-Value Storage System
Ahmed Alquraan∗, Sreeharsha Udayashankar∗, Virendra Marathe#, Bernard Wong∗, Samer Al-Kiswany∗

∗University of Waterloo, Canada
#Oracle Labs, USA

Abstract

We present LoLKV, a novel logless replicated key-value stor-
age system. LoLKV follows a fundamentally different ap-
proach for designing a linearizable key-value storage system
compared to state-of-the-art systems. LoLKV forgoes the clas-
sical log-based design and uses lock-free approach to allow
multiple threads to concurrently update objects. It presents a
novel leader election and consolidation approach to handle
complex failure scenarios. LoLKV’s followers are passive,
reducing their overall CPU usage. Our evaluation shows that
LoLKV achieves 1.7–10× higher throughput and 20–92%
lower tail latency than other state-of-the-art low-latency key-
value stores.

1 Introduction
Online services, such as financial services [1, 2] and inter-
active applications [3], have strict tail latency requirements
in the microsecond ranges [4]. Systems supporting these ser-
vices must achieve high throughput at a low tail latency. A
central category of systems supporting this class of services
is replicated and strongly consistent key-value stores [5, 6, 7].

State-of-the-art low-latency key-value stores such as APUS
[5], DARE [6], Mu [7], and uKharon-KV[8] use RDMA-
based consensus protocols, which replicate data across multi-
ple nodes in a few microseconds. While these systems achieve
acceptable tail latencies under low load, our evaluation (Sec-
tion 6) shows that these systems are unable to maintain these
low tail latencies under high load. The main reason for this in-
efficiency is that these systems follow the classical log-based
design [9, 10] for building a linearizable storage.

The classical log-based design has two steps for executing
operations that update objects: replication and application.
During the replication step, a leader stores and replicates
a new operation to a replicated log. Once the operation is
replicated on a majority of followers, the application step
applies the operation to the key-value store on all followers.

The log-based design [9, 10] has three fundamental ineffi-
ciencies when considering low tail latency workloads. First,
the log represents a single point of serialization, limiting con-
currency and prohibiting current systems from effectively
leveraging multi-core machines. To address this inefficiency,
modern systems resort to sharding [5, 6, 7, 11, 12, 13, 14],
such that each shard serves a subset of the key space. Each
shard has a separate process with its own memory, threads,
and followers on other nodes. Current systems use sharding
for two purposes. First, to distribute shards among nodes to
scale to large clusters. Second, to have multiple active shards

per node to leverage multiple CPU cores. Unfortunately, de-
ploying multiple active shards per node leads to inefficient
memory use, especially when paired with RDMA, as each
shard process has its own pinned memory region causing
memory fragmentation. Furthermore, having a large number
of shards complicates supporting multi-key operations and
leads to lower performance for skewed workloads, in which a
few shards hold popular keys.

The second fundamental inefficiency is that the classical
log-based design separates data replication from application.
In key-value stores this leads to an extra memory copy as new
objects need to be first stored in the log [5, 6, 7] and later,
when committed, copied to the key-value store.

Finally, the classical design requires all followers to re-
execute every operation. This significantly increases system
overhead. For instance, with a replication level of three, every
operation is executed three times in the cluster.

We present the Logless Linearizable Key-Value (LoLKV)
storage system. LoLKV follows a fundamentally different
design approach compared to the state-of-the-art systems.
LoLKV forgoes the replicated log design and avoids placing
multiple active shards on a node. In LoLKV, a node may have
a single active leader shard and multiple passive follower
shards. The leader shard is multi-threaded and utilizes all of
the node’s CPU cores. The passive follower shards are not
involved in processing put and get operations. The leader
shard uses one-sided RDMA to replicate new objects on fol-
lowers. Once the new object is replicated on a majority of
nodes, the hash table is updated with a pointer to the new
object.

This approach overcomes the aforementioned shortcom-
ings. First, it uses multiple threads to utilize all CPU cores
and to concurrently replicate objects. It avoids extra memory
copies by only having pointers in the hash table. Finally, the
leader replicates the updates to the memory and hash table of
followers without requiring the follower to re-execute opera-
tions. This enables LoLKV to use all available resources on all
nodes to serve client requests, leading to higher performance.

While the proposed design increases system concurrency,
it introduces new challenges for leader election and data con-
solidation. The proposed design complicates fault tolerance
because LoLKV uses multiple concurrent threads that can
leave the system in an inconsistent state under leader failure
scenarios. Applying insert and delete operations directly in
the key-value store complicates garbage collection as well.
To realize LoLKV, we design novel leader election and data
consolidation protocols that identify the latest updates for
each memory segment and sync a new leader with the latest

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 41

system state. In addition, LoLKV uses a replicated garbage
collection approach to maintain the storage system memory
in sync during garbage collection.

We implemented LoLKV and compared it to the state-
of-the-art systems. Our evaluation shows that for uniform
workloads, LoLKV achieves 1.69–2.9× higher throughput
and 20–55% lower tail latency over DARE [6], and 4–10×
higher throughput and 56–92% lower tail latency over APUS
[5], Mu [7] and uKharon [8]. In addition, our evaluation shows
that LoLKV achieves similar results under skewed workloads
and under different read and write ratios. Our evaluation of
system scalability shows that LoLKV can scale to efficiently
use all system resources and achieve up to 18 million op/s
which is 4×, 7×, 10×, and 36× higher than DARE, uKharon,
Mu, and APUS, respectively.

The rest of the paper is organized as follows. Section 2 dis-
cusses RDMA and RDMA-based consensus protocols. Sec-
tion 3 and 4 discuss the design and implementation of LoLKV.
Section 5 discusses the correctness of LoLKV. Section 6
presents the results of our evaluation. Section 7 discusses ad-
ditional related work before the paper concludes in Section 8.

2 Background and Related Work
2.1 Remote Direct Memory Access
Remote direct memory access (RDMA) [15] allows a machine
to directly access the memory of a remote machine without
involving the remote CPU. RDMA offers a low-latency and
high throughput communication mechanism as it bypasses
the kernel network stack.

Applications communicate over RDMA by establishing
queue pairs. Each queue pair consists of a send and a receive
queue. RDMA supports two main types of operations: two-
sided and one-sided operations. Two-sided operations include
Send and Receive operations and involve the CPUs of both
the sender and receiver. One-sided operations do not involve
the CPU on the receiving side. The sender specifies the data’s
remote address. One-sided operations have lower latency and
higher throughput compared to two-sided operations [16].

Current implementations of RDMA support three transport
protocols: Reliable Connected (RC), Unreliable Connected
(UC), and Unreliable Datagram (UD). In RC and UC, a con-
nection is established between two queue pairs, one on the
sender and one on the receiver, which communicate exclu-
sively with each other. RC guarantees that messages are deliv-
ered at most once, in order, and without corruption. In a UD
protocol, one queue pair can communicate with one or more
queue pairs. UD supports only two-sided operations.

In LoLKV, we use one-sided Writes over RC for data
replication and two-sided operations over UD for client com-
munication.

2.2 RDMA-based Consensus
Several RDMA-based leader-based consensus protocols have
been recently proposed. In leader-based systems, one replica

acts as a leader while others are followers. The leader is
responsible for processing client requests. The leader appends
new operations to the log and then replicates the log entry on
followers. The operation is considered committed only if it is
replicated on a majority of replicas. The leader then applies
the operation to the state machine and replies to the client.

DARE [6] is an in-memory RDMA-based consensus pro-
tocol that adopts the Raft protocol [9]. Replication in DARE
requires 2 RTT of one-sided Write operations. The first set of
Writes appends the log entry to the follower logs while the
second updates their tail indices. When both Writes succeed
on a majority of replicas, the leader updates its commit in-
dex and posts another Write to update the followers’ commit
indices. Followers check their commit index periodically to
apply newly committed entries to their state machines.

APUS [5] is a Paxos-based [10] consensus protocol which
uses RDMA. The leader stores new operations to its local
log and then replicates log entries to follower logs using one-
sided Writes and waits for acknowledgments. In contrast
to DARE, APUS followers actively participate in replication.
Each follower notifies the leader when it accepts a log entry by
sending an RDMA Write to update the entry in the leader’s
log. The leader commits an entry if it is accepted by a majority
of replicas. Committing an entry in APUS requires 2 RTTs.

Mu [7] is an RDMA-based consensus protocol that targets
microsecond-scale applications. The leader uses an RDMA
Write to append operations to follower logs. The operation is
considered committed if it is replicated on a majority. Follow-
ers poll committed requests from the log and pass them to the
application. The leader does not start replicating a log entry
until the previous one is committed. Mu requires a single RTT
to replicate an operation in the common case.

uKharon [8] is an RDMA-based consensus protocol opti-
mized for microsecond-scale failure recovery. uKharon uses
one-sided RDMA-based Paxos to achieve fast leader failover
times. To enable one sided Paxos, uKharon’s consensus en-
gine uses an RDMA Write and a Compare-and-Swap (CAS)
operation in the ACCEPT phase while Mu [7] only uses an
RDMA Write. While this additional CAS improves failure
recovery times, the authors mention that it causes uKharon to
perform worse than Mu in failure-free scenarios. In addition,
uKharon does not offer ways for failed or network-partitioned
nodes to rejoin the system.

These systems have three fundamental shortcomings.
Firstly, at the core of each of these systems is a replicated
log. The log limits concurrency because it introduces a serial-
ization point. New operations are inserted serially in the log.
Furthermore, in Mu, a new object is replicated only when the
previous object is committed.

We evaluate the overhead of having multiple threads ap-
pending to a log. Figure 1 shows the time a thread waits until
it acquires the lock protecting the log in APUS and Mu. Re-
sults show that the average wait time for 8 threads is 14.9×
and 38.5× higher than that with one thread for APUS and

42 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 3 4 5 6 7 8
Number of Threads

102

103

104

W
ai

t T
im

e
(n

s)

APUS Mu

Figure 1: The average time needed to acquire the lock pro-
tecting the operation log in APUS and Mu.

Mu, respectively. Mu has a higher overhead as Mu holds
onto the lock until the operation is replicated and committed,
while APUS releases the lock after appending the request
to the log. Given the low latency that RDMA provides, the
delay imposed by the log serialization mechanism introduces
a bottleneck that limits the performance of the system.

Second, the log-based design imposes an additional data
copy. New objects are first inserted into the log and then
copied to the key-value store. Finally, to efficiently leverage
all CPU cores, multiple leader shards are deployed per node.
Deploying multiple leader shards per node requires physical
partitioning of memory between co-located shards, leading
to inefficient memory usage. Also, sharding leads to lower
performance under skewed workloads.

LoLKV adopts a fundamentally different design approach
to overcome these shortcomings. LoLKV adopts a logless
design that co-designs the storage and index data structures to
avoid unnecessary memory copies. LoLKV deploys a single
multi-threaded leader shard per node, which is able to effi-
ciently utilize all CPU cores. It also uses novel techniques
for leader election, data consolidation, and garbage collection.
These design decisions lead to higher concurrency and lower
system overhead.

3 LoLKV Design
LoLKV supports get, put, and delete requests, which read,
write, and delete entire objects respectively. Figure 2 shows
the architecture of LoLKV. The system consists of a set of
nodes (i.e., replicas or replica set) connected using an RDMA-
capable network, such as InfiniBand [15].

LoLKV adopts a leader-based replication protocol, in
which one replica acts as a leader while others are follow-
ers. All client requests are handled by the leader, which runs
multiple worker threads to process them. LoLKV does not
partition the key space among the threads, i.e., any thread can
process put or get requests for any object.

Similar to Raft [9] and Multi-paxos [17], LoLKV divides
time into terms with a single leader per term. Each term has a
unique term_id that is assigned in a strictly increasing order.
When the leader fails, a new leader is elected using a leader
election protocol (Section 3.4).

1

Object 1

Metadata

Object K

Replica 2

t1

Leader

. ..
tN

Hash Table
Segment Store

Client

Replica 3

Segment
Store
Hash
Table

Segment
Store
Hash
Table

2

3

3

6

4

6
5

Figure 2: LoLKV Architecture.

LoLKV has two components: the segment store, which
holds objects within memory segments; and the hash table,
which contains pointers to these objects. To store a new value,
the leader first stores the value in its local segment store (Step
2 in Figure 2) before replicating it on follower nodes (Step 3).
A new value is considered committed only if it is stored in
the segment store of a majority of followers. After an entry
is committed, the leader updates its local hash table (Step 4)
and replies to the client (Step 5). Updates to the hash table
are replicated lazily to the followers (Step 6) since the object
metadata stored in the segment store has enough information
to recover the hash table in case of leader failure.

LoLKV guarantees linearizability at the object level; up-
dates to the same object appear to be executed in a single
global order. While updates to different objects can proceed
concurrently. To manage concurrency within the segment
store, each worker thread has exclusive access to a subset
of the memory segments. The hash table is shared among
all threads and uses CAS operations to serialize concurrent
updates by multiple threads.

3.1 Segment Store
LoLKV divides allocated memory into equal sized segments
which hold objects. Each segment contains a metadata sec-
tion and an array of ObjectEntries. All objects within a
single segment have the same size but objects across different
segments may have different sizes. LoLKV’s segment store
design is inspired by the Hoard memory allocator [18].

A segment can be owned by a single worker thread at a time.
The thread which owns a segment has exclusive write access
to its objects. A segment can be free meaning it is unowned,
active meaning it has space for new objects, or sealed meaning
that it is full and its objects cannot be modified. As stored
objects are immutable, any thread can read any object from
any segment. Each thread typically owns multiple segments
with different object sizes.

3.1.1 Segment Metadata

Figure 3a shows the fields of a segment’s metadata:

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 43

SegmentMetadata {
bit<64> owner_id;
bit<64> term_id;
bit<4> status;
bit<64> seg_ver;
bit<32> object_size;
bit<64> tail_idx;
}

(a) Segment Metadata

ObjectEntry {
bit<64> term_id;
bit<64> seq_num;
bit<64> incarnation;
byte<64> key;
byte<var> value;

}

(b) ObjectEntry
Figure 3: LoLKV data structures.

• owner_id : ID of the thread that owns the segment.
• term_id : Term during which the latest change to the

segment metadata occurred.
• status : Indicates whether a segment is active or sealed.
• seg_ver : Updated when a thread owns a segment.
• object_size : Size of objects within the segment. Ob-

ject size may differ between segments.
• tail_idx : Index of the latest inserted entry in the seg-

ment.

3.1.2 Owning a Segment

To claim ownership of a new segment, a thread traverses the
segments array in the segment store to find a segment that is
“free”. The thread then uses a CAS operation to change the
owner_id field of the metadata of the free segment. Following
this, the thread sets the seq_num for all ObjectEntries to
-1 to indicate that they are free. Then, it sets the fields of
the segment metadata: term_id to the current term number,
status to “active”, and tail_idx to 0.

LoLKV commits segment ownerships one at a time on
a majority of replicas. The thread owning a new segment
acquires a lock, increments a counter shared across threads,
copies the counter’s value to the seg_ver field in the segment
metadata, and then replicates this metadata. Once the opera-
tion is committed via replication on a majority of followers,
the thread releases the lock and uses the segment to store new
objects. This process guarantees that a segment’s ownership
is committed before it is used.

3.1.3 Sealing and Releasing a Segment

A thread seals a segment when it is full and all its objects
have been applied to the hash table. A segment remains sealed
until all its entries are garbage collected. After that, the thread
can release the segment. To release a segment, a thread will
change the owner_id to -1 and set the status to “free”. When
a segment is released, it becomes available for other threads
to own. Sealing and releasing a segment are performed by
changing the status field to “sealed” or “free”, respectively.

Segment sealing and releasing operations are not replicated.
If a leader fails after sealing or releasing a segment, a future
leader will perform the same operations as the old leader. If it
finds a full segment, it will seal the segment, and if it finds an
empty segment, it will release the segment.

3.2 Hash Table
The hash table stores pointers to ObjectEntries stored in
segments; The goal of the hash table is to implement efficient
get operations. The size of each hash table entry is 64 bits.

A hash table entry stores the offset of an ObjectEntry
within the segment store, to ensure portability across repli-
cas. While segment stores may have different base addresses
across replicas, an ObjectEntry in a segment will have the
same offset on all replicas. The hash table is shared among
all worker threads.

The main fields of an ObjectEntry are shown in Fig-
ure 3b:

• <key,value>: The object’s key and value.
• term_id : Term during which this entry was written.
• seq_num : Operation sequence number assigned by the

worker thread. Used to order all operations of a thread
within a term.

3.3 Replication Protocol
The leader runs multiple worker threads to process client
requests. Each request is processed by one worker thread.
Worker threads are independent; each thread has its own
RDMA resources (e.g., queue pairs and work completion
queues).

3.3.1 Worker Thread Metadata

Each worker thread maintains the following metadata
fields: sequence_number and latest_operation. The
sequence_number is a strictly increasing counter that is used
to assign a sequence number for put operations processed by
the thread. The latest_operation field stores the address
of the last ObjectEntry inserted by the thread.

The thread also maintains two metadata fields for
each follower: latest_replicated_operation and
latest_applied_operation. The thread uses these to
identify operations not yet replicated or applied at the
follower.

3.3.2 Put Requests

The processing of a put request has three main phases: cre-
ation, replication, and application phases.
Creation Phase. When a thread receives a put request, the
thread creates an ObjectEntry and populates its fields. The
thread increments its sequence_number and assigns it to the
entry. The thread writes the object to a segment. The thread
updates its latest_operation field and tail_idx field of
the segment metadata to point to the newly inserted entry.
Replication Phase. The thread commits the ObjectEntry by
replicating it on a majority of replicas. The thread replicates
entries in order of seq_num. Threads use RC transport to
replicate objects, which guarantees in-order message delivery.

44 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Once an ObjectEntry is replicated on a majority of repli-
cas, the request is considered committed. The thread updates
its latest_replicated_operation field whenever it repli-
cates an entry on a follower. The <term_id, seq_num> tuple
specifies the order of all operations processed by a thread.
Application Phase. After an ObjectEntry is committed,
the thread updates the hash table entry to point to the newly
inserted object. To guarantee consistency, entries must be
applied in the order specified by <term_id, seq_num> tuple.

LoLKV uses a linear probing hash table. The thread first
checks if the key already exists in the hash table. The thread
hashes the key K to determine the entry to begin probing from.
The thread checks that hash table entry and all successive
entries one by one. Probing terminates when the thread finds
either a hash table entry pointing to an ObjectEntry of the
key K or an empty entry. If the thread finds an entry pointing
to the key K, the thread only updates the entry if the insert is
a newer operation than the existing version (Section 3.3.3). If
probing ends at an empty entry, the key is inserted into the
empty entry.

As the hash table is shared among all worker threads, multi-
ple threads may concurrently try to update the same hash table
entry. To ensure correctness, hash table entries are updated
atomically using CAS operations. If a CAS operation fails,
the thread repeats the probing process.

After the thread applies the entry locally, it returns an ac-
knowledgement to the client. In the background, the thread
replicates the hash table updates to the followers. Periodically,
the thread updates segments’ tail_idx on followers.

3.3.3 Concurrent Put Requests to the Same Key

In LoLKV, multiple put requests for the same key might be
replicated concurrently by different threads. As a result, an
ordering mechanism is needed to ensure the correctness of
the system. LoLKV uses the incarnation array to ensure
operations are serialized. The incarnation array is an array of
K atomic counters. LoLKV divides the key-space into groups
and each group is mapped to a counter in the incarnation
array. The counter is atomically incremented whenever a put
operation for a key within the group is processed. This value
is then stored in the incarnation field of the ObjectEntry.

Before applying an ObjectEntry to the hash table,
its <term_id, incarnation> tuple is verified to ensure
that it is larger than the <term_id, incarnation> of the
ObjectEntry currently pointed to by the hash table. If it
is not larger, the hash table update is discarded since the
ObjectEntry currently pointed to by the hash table is newer.

The incarnation array is not replicated as it is only used
to order writes by leader threads. When a new term starts,
the new leader resets its incarnation array. The size of the
incarnation array is far larger than the number of worker
threads, which reduces the chance of false sharing between
concurrent put operations.

3.3.4 Get Requests

In LoLKV, get requests are served locally by the leader. Any
thread can process any get request for any key as a thread
can read objects from all segments, even a segment it does
not own. The worker thread probes the hash table in the same
manner used for put requests. The thread will return a value
to the client only if the hash table entry points to a valid
ObjectEntry. It is safe to serve get requests using only the
leader state because the leader obtains a lease [19] from a
majority of replicas. During the lease, other replicas will not
try to become a leader.

3.3.5 Delete Requests

Delete requests follow the same steps of the put requests
with a small difference: a tombstone object is replicated in
the segment store and the hash table is updated with to point
to the tombstone object.

3.4 Leader Election
LoLKV divides time into terms, and each term has at most
one leader. Before a replica becomes a leader, it must get the
votes of a majority of replicas. Each replica can vote only
once in a term. LoLKV relies on dynamically managing the
state of the RC QPs to ensure that only the current leader
has remote access to the system’s data structures. Before
accepting a vote request from a candidate, replicas revoke the
old leader’s access by transitioning the associated QPs into a
non-operational state.
Failure detection. LoLKV employs a heartbeating mecha-
nism to detect failures. Each replica maintains a heartbeat data
structure which consists of three fields: term_id, leader_id,
and counter. The counter field is incremented periodically.
The leader election protocol starts when a follower suspects
that the leader has failed (i.e., misses N heartbeats from the
leader). To detect leader failure, followers read the leader’s
heartbeat data structure periodically via RDMA. Followers
verify that the leader’s counter field has changed and that
the leader’s ID and term_id match their data structure. If a
follower cannot access the leader’s heartbeat data structure
or the leader’s counter does not change for a specific dura-
tion, the follower assumes that the leader has failed. Similarly,
the leader checks the followers heartbeat data structures pe-
riodically and steps down if it no longer has a majority of
followers.
Leader election. Leader election protocols of some systems
(e.g., Raft [20]) elect the most up-to-date replica as a leader.
However, using this approach in LoLKV is not feasible. In
LoLKV, different worker threads are independent. Different
threads may replicate different requests on different replicas.
That is, two committed operations could be replicated on two
different majorities. As a result, after a leader failure, there
could be no replica that is up-to-date for all threads.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 45

In LoLKV, each replica scans its segments to find the the
segment with the largest <term_id, seg_ver>. Replicas ex-
change their largest <term_id, seg_ver>. The replica with
the largest <term_id, seg_ver> becomes a leader. If mul-
tiple nodes have the same <term_id, seg_ver>, the node
with the smallest IP address among them becomes the leader.
Data consolidation. The elected leader may not have all the
segments up-to-date. Updating segments requires identifying
the most up-to-date replica for each thread. To do this, the
leader sends a request to each follower asking for the highest
<term_id, seq_num> of each thread. Using this information,
the leader identifies its missing operations for each thread and
the replicas which have these operations. The leader contacts
the most up-to-date follower to get the missing operations.
The leader commits any uncommited operations and applies
them to the hash table.
Update Followers. During the leader election and data
consolidation steps, the leader finds the highest <term_id,
seg_ver> for each follower and the highest <term_id,
seq_num> for all threads of the follower. The leader uses this
information to complete the work of the previous leader by
committing all uncommitted memory ownership operations
and put operations.

Once the leader completes this process, the leader has all
committed values and its segment store is up-to-date. After
that, the leader starts serving new client requests.

3.5 Fault Tolerance
Follower Failure. LoLKV is designed to tolerate N replica
failures given 2N + 1 replicas. When a follower fails,
the leader removes it from the active set and stops repli-
cating operations on that replica. Hence, follower fail-
ures do not affect the safety of the system. When a fol-
lower rejoins the system, the leader first finds the high-
est <term_id, seg_ver> of the follower, and then it repli-
cates all memory ownership operations that the follower
misses. Then, the leader recovers the worker threads metadata
for that follower (i.e., latest_replicated_operation and
latest_applied_operation). After that, the leader starts
replicating ObjectEntries on the follower.
Leader Failure. When the leader fails, the system will not be
available until a new leader is elected and the data consolida-
tion process completes. For any thread, it is guaranteed that at
least one replica in any majority has all committed entries that
are committed by the failed leader. The new leader will use
the data consolidation mechanism (Section 3.4) to bring itself
up-to-date. Hence, although a leader failure might affect the
availability of the system, it does not affect its correctness.
Message Loss. Client requests and responses are sent over
UD QPs, which do not guarantee delivery of messages. If a
request or a response is lost, the client times out and resubmits
the request again. Note that it is safe to process requests again
since they are idempotent. On the other hand, replication is
implemented on top of RDMA RC transport which offers

reliable and in-order message delivery.
Data Corruption. The data structures described in Section
3 can be accessed simultaneously by both local and remote
threads. As a result, the correctness of any data read must be
verified. LoLKV facilitates this by augmenting each struc-
ture with verification information. ObjectEntries are aug-
mented with a byte appended to the end of each entry. For seg-
ment metadata entries and heartbeat data structures, a counter
field is stored at the beginning of the data structure and again
at the end of the data structure. If a failure occurs while up-
dating this data structure, the counter field at the beginning
will not match the one at the end.

Self-verifying data structures [13] are able to detect cor-
ruptions at the remote side as well (e.g., incomplete RDMA
Write) because RDMA NICs guarantee that writes are per-
formed in an increasing address order, i.e., the verification
bytes at the end are not written before other bytes in the data
structure.

4 Implementation Details

4.1 Garbage Collection
The system will eventually run out of space if segments are not
released by owner threads. The garbage collection process is
responsible for releasing segments. A segment is not released
until all ObjectEntries in the segment become invalid, i.e.,
they are inaccessible through the hash table.

Each thread periodically checks its sealed segments to iden-
tify any segments that should be freed. In LoLKV, a segment
is freed if the ratio of valid objects in a segment drops below
a configurable threshold. Before a segment is released, all its
valid entries must be moved to another active segment. The
owner thread moves these entries to a new segment while pre-
serving their incarnation and term_id values in order to
avoid overwriting a newer entry of the same key. The thread
then inserts the objects in the hash table using the same prob-
ing mechanism. An entry in the hash table is updated with a
new address only if its incarnation equals that of the moved
object. Once the segment does not have any valid entries, the
thread releases the segment by updating its metadata.

4.2 Reusing Tombstones
While processing a put, if during the probing step the thread
reaches an empty hash table entry, this indicates that the key
does not exist. During probing, the thread records the first
hash table entry that points to a tombstone with a term number
smaller than the current term number. If probing terminates
at an empty hash table entry (i.e., the key is not found), the
thread updates the hash table tombstone to point to the new
ObjectEntry. If no tombstone is found, the empty hash table
entry is updated to point to the new ObjectEntry. We only
reuse tombstones from previous terms to avoid conflicts with
delete requests in the current term.

46 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

5 Correctness
LoLKV design is based on the following assumptions; the
network is unreliable and asynchronous, as packets could be
dropped or take arbitrary time to arrive at the destination.
There is no limit on the time a node takes to process a request.
We assume a non-byzantine failure model in which nodes
may stop working but will never send erroneous messages.

LoLKV guarantees linearizability at the object level. All
operations for an object appear to be executed in a single
global order. We used the TLA+ model checking tool [21] to
verify LoLKV’s correctness. We use TLA+ model checking
to verify the correctness of the segment store, the hash table,
the replication protocol, and the leader election. In this section
we sketch out the proof of LoLKV’s correctness and discuss
the correctness of the segment store and the hash table. To
simplify the discussion, we sketch the proof without garbage
collection.
Property I. Memory ownership is safe, meaning if a segment
is owned by a thread, the segment ownership operation will
be present in all future leaders. To prove this, we use three
invariants:

1. A leader in term i commits segment ownership opera-
tions in order of the seg_ver. When a thread owns a
new segment, it acquires a lock, increments seg_ver and
assigns it to the new segment, commits the ownership
operation on a majority of followers, then releases the
lock. Using a lock guarantees that segments are assigned
an increasing seg_ver and are committed in order of
seg_ver.

2. For a given term i, if a follower has segment with
term_id = i and seg_ver = n, it is guaranteed that it
also has all segments with term_id = i and seg_ver < n.
Following the argument in the previous invariant, seg-
ment ownership operations are committed in order of
seg_ver. Furthermore, LoLKV uses RC transport to repli-
cate memory ownership operation. RC guarantees or-
dered delivery of messages. This means if a node re-
ceived seg_ver, then it must have received all previous
messages sent on that channel.

3. The last segment ownership operation committed in term
i is present in the leader of term i+1. The leader elec-
tion protocol elects a leader with the highest <term_id,
seg_ver> among a majority of replicas. If the last com-
mitted ownership operation on a majority in term i has
seg_ver = n, then the leader of term i+1 will have an
ownership operation with term id = i and seg_ver >= n.
Following invariant 1 above, the leader of term i+1 will
have the last committed entry in term i.

Invariant 3 indicates that a leader of term i has the latest
memory ownership committed in term i−1. Hence, invariant
2 implies that the leader of term i also has all segment owner-
ship committed in term i−1. By induction, the leader of term
i has all the segment ownership committed in all previous

terms.
Property II. The data consolidation process guarantees that
a leader has all committed entries from the previous term.
Without loss of generality, we sketch the proof for a single
thread here using the following invariants:

4. The leader thread in term i replicates put operations in
order of the seq_num. To commit an operation, the leader
thread increments the seq_num, stores the operation in
the local segment store, then replicates the operations to
followers.

5. If a follower in term i receives an operation with
seq_num = n, then this follower has received all opera-
tions from this thread in term i with seq_num < n. This
follows from invariant 4, and that we use RDMA RC
transport for replication. The RC transport guarantees
in-order delivery of messages.

6. For a given thread in term i, if an operation with
seq_num = n is committed, then all operations for that
thread in term i with seq_num < n are committed. If
operation with seq_num = n in term i is committed,
then this operation has been received by a majority of
nodes. From invariant 5 above, those nodes that received
seq_num = n must have received all operations in term
i with seq_num < n. Given that those are a majority of
nodes, then all operations in term i with seq_num <= n
are committed.

7. A node that has the highest seq_num in term i among
a majority of nodes has all of the committed entries in
term i. Assume that in term i, the largest seq_num on a
majority of nodes is n, and that the last committed entry
in term i is m. Given that seq_num = m is replicated on a
majority, then m <= n. Following invariant 5 above, the
node that has n also has all operations with seq_num < n,
including m. Following invariant 6, it has all committed
entries in term i.

The newly elected leader has the highest term number on
a majority of nodes, but may not have all committed entries
from the previous term. Before processing new requests, the
leader runs the data consolidation process. For each thread,
data consolidation looks for the highest <term_id, seq_num>
on a majority of replicas. If a follower has a seq_num higher
than the seq_num of the leader thread, then the consolidation
process updates the leader with all missing operations. At
the end of this process, for a given thread, the leader has all
operations from the previous term with the highest seq_num
among a majority of nodes. Following invariant 7 above, the
leader has all committed entries in that term for that thread,
verifying property II.
Property III. LoLKV guarantees if an object is committed by
a leader it will be present in the segment store of all future
leaders. From property II above, if a leader commits an oper-
ation in term i, the data consolidation process guarantees that
this operation will exist in the segment store in the leader of
term i+1. By induction, a committed entry will exist in the

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 47

segment store of all future leaders.

5.1 Correctness of the Hash Table
We do not need to replicate updates to the hash table entries for
correctness. The object store has all the information needed to
recover the hash table on a new leader. LoLKV threads lazily
replicate updates to the hash table in the order of seq_num
only to optimize leader recovery.

We discuss safety when multiple threads try to update the
same slot in the hash table under two scenarios: concurrency
between threads updating the same slot with different keys
and concurrency between threads updating the same slot with
the same key.

The hash table uses CAS to update its slots. If a thread
finds an empty slot in the table and its CAS operation fails to
update that slot, the thread repeats the probing operation to
find the target slot for the new object.
Property IV. LoLKV applies updates to the hash table follow-
ing the order specified by the incarnation. If two threads
are processing a put request for the same key, one of them will
insert the update first in the table using CAS. While probing,
the second thread will find that the key already exists, but
since the object was inserted by a different thread, we cannot
use the seq_num to order these updates. For this scenario,
we rely on the incarnation field. When processing a put
request, a thread atomically increments the incarnation array
to get a unique increasing incarnation for its put operation.
We use this number to order operations on the same key. If a
thread finds the object in the table with incarnation higher
than the incarnation of its put operation, it discards its put
operation, otherwise it updates the hash table.
Property V. In LoLKV, A get request returns the latest com-
mitted object for the target key. In LoLKV, get requests are
served locally by the leader without contacting the followers.
To serve a get request, a worker thread probes the hash table
in the same manner used for a put request. If the thread finds
the target key in the table, the thread reads the object from the
object store. The thread verifies that the hash table slot was
not modified while the thread is reading from the object store
by verifying that the slot still contains the same object store
address. If the slot has a different address, the thread repeats
the process and reads the newer object of the key. Since a
key can have at most one slot in the hash table, and since
hash table slots point only to committed objects, the thread is
guaranteed to return the latest committed object for the key.
Property VI. LoLKV guarantees linearizability at the object
level. Properties I, II, and III guarantee that if a leader com-
mits an entry in the segment store, the entry will be present
in the segment store of all future leaders. Multiple threads
may concurrently commit entries for the same key. Property
IV shows how LoLKV uses the incarnation to create a
global order of updates to the same key. Finally, Property V
guarantees that get operations return the latest committed
entry. These properties guarantee that LoLKV is linearizable

for put and get operations per key.

6 Evaluation
We evaluate the performance of LoLKV and compare its
latency and throughput against the state-of-the-art alternatives
using uniform and skewed workload distributions.
Testbed. We conducted the experiments using a 12-node
cluster on Cloudlab Utah [22]. Each machine has a Xeon
E5-2450 8-core CPU with hyperthreading, 16GB of RAM,
and a Mellanox Dual port FDR CX3 adapter. Machines are
connected using a 56 Gbps Infiniband [15] network.
Alternatives. We compare LoLKV against DARE [6], APUS
[5], Mu [7], and uKharon [8]. DARE and uKharon imple-
mentations come bundled with an in-memory key-value store.
For APUS and Mu, we implemented an in-memory key-value
store following the same design as LoLKV’s in-memory key-
value store. Newly inserted keys are stored in the APUS or
Mu logs and then copied to the segment store during the
apply phase. We also evaluated LogCabin [20], a strongly-
consistent key-value store based on Raft [9]. LogCabin uses
TCP/IP stack for communication. Our results with write-only
workload show that LogCabin has a throughput of 12,500 ops,
which is at least two orders of magnitude lower than other
RDMA-based systems, and its latency is around 1.5ms, which
is three orders of magnitude higher latency than other RDMA-
based systems. We also evaluated HERD [12], an unreplicated
key-value store that uses a mixture of RDMA Writes and
RDMA Send and Receive for communication with clients. Re-
sults show that HERD achieves 4×, 8×, 8×, and 50× higher
throughput compared to LoLKV, DARE, Mu, and APUS, re-
spectively. This performance difference is mainly because
HERD is an unreplicated key-value store, while other systems
implement a replicated and linearizable key-value store. We
omit adding the results of LogCabin and HERD to the figures
for clarity.
Experiment Configuration. We run the systems in a multi-
sharded setting, in which multiple processes of a system are
deployed. Each process represents a replica of a single shard.
We benchmark each system and select the number of shards
and configurations that maximize its performance. We used a
replication factor of three in all our experiments. All replicas
of all shards were distributed among the same three nodes,
while other nodes are used to run clients. Unless otherwise
specified, we deploy the leader replicas of all shards on one
node. However, we evaluate the scenario when the leaders are
equally distributed among nodes in Section 6.6.
Shard Configuration. We run LoLKV with 8 threads, DARE
with 8 shards, APUS with 7 shards, and Mu and uKharon
with 4 shards. APUS does not scale to 8 shards as it runs a
background process to establish RDMA multicast commu-
nication paths. Mu does not scale to 8 shards as each shard
uses 4 threads; one thread performs log replication while 3
threads perform heart beating, monitoring, and permissions
management. uKharon also does not scale to 8 shards as each

48 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

LoLKV Mu DARE APUS uKharon

0 1 2 3 4 5 6
Throughput (Mops)

0

20

40

60

80

La
te

nc
y

- 9
9t

h
%

ile
 (u

s)

Write-only Workload

0 1 2 3 4 5 6 7 8 9
Throughput (Mops)

0

20

40

60

80 YCSB Workload A (50% Writes)

0 3 6 9 12 15
Throughput (Mops)

0

20

40

60

80 YCSB Workload B (5% Writes)

0 3 6 9 12 15 18
Throughput (Mops)

0

20

40

60

80 Read-only Workload

Figure 4: Throughput and tail latency using uniform YCSB workloads.

0 1 2 3 4 5 6
Throughput (Mops)

0

20

40

60

80

La
te

nc
y

- 9
9t

h
%

ile
 (u

s)

Write-only Workload

0 1 2 3 4 5 6 7 8 9
Throughput (Mops)

0

20

40

60

80 YCSB Workload A (50% Writes)

0 3 6 9 12 15 18
Throughput (Mops)

0

20

40

60

80 YCSB Workload B (5% Writes)

0 3 6 9 12 15 18
Throughput (Mops)

0

20

40

60

80 Read-only Workload

Figure 5: Throughput and tail latency using skewed YCSB workloads.

shard uses two threads, one for processing client requests and
replication and one for monitoring and detecting failures.

Multi-shard deployment of DARE, APUS, Mu, and
uKharon requires sharding the key space into partitions, with
all requests to keys within a partition being served by the
same replica set. In our experiments with these systems, a
client picks the right shard for a request based on the hash
of the key. On the other hand, as LoLKV does not have a
fixed assignment of keys to threads, its clients send requests
to threads in a round-robin fashion.
Workload. We used the YCSB benchmark [23] in our experi-
ments with both uniform and skewed workloads. The skewed
workload follows the Zipf distribution with a skewness param-
eter of 0.99. We experimented with 100,000, 1 million, and
10 million keys. As the results obtained in all these cases are
similar, we present the results with 1 million keys. The key
and value sizes are 24 and 64 bytes respectively. We report
the averages from running 10 trials for each experiment. The
standard deviation of all our experiments is below 5%.

6.1 Performance Evaluation
We compare the throughput and latency of all systems using
the YCSB workloads with uniform and skewed key popularity
distributions (Figure 4 and Figure 5).

For uniform workloads (Figure 4), LoLKV achieves 1.7–
2.9× higher throughput and 20–55% lower latency compared
to DARE. LoLKV also achieves 4–10× higher throughput
and 56–92% lower latency compared to uKharon, Mu, and
APUS. Figure 5 shows that LoLKV’s performance is not
affected by workload skewness. On the other hand, DARE,
uKharon, Mu, and APUS achieve 14%, 16%, 6%, and 18%

lower throughput with the skewed write-only workload com-
pared to their throughput with uniform workload.

LoLKV outperforms other alternatives for several reasons.
First, LoLKV requires only one RDMA Write operation to
replicate an object. Second, LoLKV combines the replication
phase and the apply phase by replicating operations directly
to the object store, avoiding an extra memory operation to
copy the data from the operation log to the object store.

APUS has the lowest performance because replication in
APUS requires two RDMA Write operations: one from the
leader to followers to replicate log entries and one from fol-
lowers to the leader to indicate the acceptance of a log entry.
Hence, in APUS, the CPUs of the followers are involved in the
replication process, which reduces throughput and increases
latency. Replication in Mu and uKharon requires only one
RDMA write operation from the leader to the followers, which
results in higher throughput and lower latency compared to
APUS. However, Mu and uKharon do not employ batching in
the replication process, which imposes long queuing delays
under heavy workloads. DARE achieves better performance
than APUS and Mu as it employs batching. However, DARE
requires two RDMA Write operations to replicate a batch of
operations: the first operation replicates log entries on follow-
ers and the second one updates the tail index of the followers.

LoLKV outperforms other systems even under read-heavy
workloads due to two reasons. First, even with a small percent-
age of put requests, the overhead of replicating and applying
operations limits the performance of get requests. Second,
APUS, Mu, and uKharon are multi-threaded systems but not
all threads are utilized to serve client requests. As a result,
given the same amount of resources, LoLKV and DARE can

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 49

LoLKV Mu DARE APUS uKharon

0 30 60 90 120 150 180
Put Latency (us)

(a)

0.0

0.5

1.0
Pe

rc
en

ta
ge

 o
f R

eq
ue

st
s

0 25 50 75 100
Commit Latency (us)

(b)

0.0

0.5

1.0

Pe
rc

en
ta

ge
 o

f R
eq

ue
st

s

0 1 2 3
Apply Latency (us)

(c)

0.0

0.5

1.0

Pe
rc

en
ta

ge
 o

f R
eq

ue
st

s

Figure 6: Latency CDF with a uniform write-only workload (a) put latency. (b) commit latency. (c) apply latency.

LoLKV Mu DARE APUS uKharon

0.5 0.6 0.7 0.8 0.9 1.0
Zipfian Constant

(a)

1
2
3
4
5

Th
ro

ug
hp

ut
 (M

op
s)

0.5 0.6 0.7 0.8 0.9 1.0
Zipfian Constant

(b)

30
60
90

120
150

Av
er

ag
e

La
te

nc
y

(u
s)

0.5 0.6 0.7 0.8 0.9 1.0
Zipfian Constant

(c)

200

400

600

800

La
te

nc
y

- 9
9t

h
%

ile
 (u

s)

Figure 7: Throughput (a), average latency (b), and 99th percentile of latency (c) when varying skewness with write-only workload.

be deployed with larger number of threads/shards than APUS,
Mu, and uKharon. Finally, DARE’s batching mechanism
batches similar operations only (i.e., a batch can have only
get or put requests). This approach leads to small batches
and degrades DARE’s performance significantly when the
workload has both get or put requests.

6.2 Latency Evaluation
Figure 6.a shows the CDF of put latency for a uniform write-
only workload. Other workloads in the YCSB benchmark
have a similar pattern. LoLKV lowers the 90th percentile of
put latency by 30%, 42%, 80% and 91% compared to DARE,
uKharon, Mu, and APUS, respectively.

Figure 6.b and Figure 6.c show the breakdown of the put
latency into commit time and apply time under the uniform
write-only workload. We measure the commit time as the time
from when the leader polls a client request until the leader
commits the request. LoLKV lowers the 90th percentile of
commit latency by 33%, 73% and 89% compared to uKharon,
Mu, and APUS, respectively. DARE’s commit latency is com-
parable to LoLKV. However, DARE has a large queuing delay
as it polls requests one by one. The impact of this polling
mechanism appears in Figure 6.a. LoLKV outperforms other
systems as requests are replicated concurrently and commit-
ting an operation requires only one RDMA Write operation.

Figure 6.c shows the CDF of the apply time of different
systems under the uniform write-only workload. The apply
time is the time needed by the system to update the key-value
store. LoLKV lowers the 90th percentile of the apply latency
by 26%, 63%, 39%, and 45%, compared to DARE, uKharon,
Mu and APUS respectively. In LoLKV, applying an operation
requires only updating the hash table to point to the new

object. In all other systems, in addition to updating the hash
table, the object is copied from the log to the segment store.

6.3 Workload Skewness
We evaluate the impact of workload skewness on the through-
put (Figure 7.a), the average latency (Figure 7.b), and the
99th percentile latency (Figure 7.c) when varying the skew-
ness factor between 0.5 and 0.999 for the write-only work-
load. Results show that LoLKV handles extremely skewed
workload efficiently; its throughput and latency are not af-
fected by the workload skewness. With a skewness factor of
0.999, the throughput of DARE, uKharon, Mu, and APUS is
reduced by 14%,16%, 6%, and 18%, and their average laten-
cies is increased by 27%, 13%, 4%, and 27% compared to
their throughput and latencies with a skewness factor of 0.5.

Increasing the skewness factor does not result in a signif-
icant performance degradation for all systems. The reason
for this is that with a skewness factor of 0.999, 50% of the
requests target only 209 keys. However, we found that these
keys are distributed among different shards. Hence, the load
generated by the clients is still distributed among all shards.
As a result, we do not see a noticeable difference in the per-
formance when comparing uniform and skewed workloads.

Modern key-value stores allow clients to select a partition
function that maps keys to shards. These functions often group
related keys in a single shards. To better understand the im-
pact of workload skewness on the performance, we conducted
an experiment in which we control the percentage of requests
targeting a shard. Figure 8.a shows the systems throughput,
Figure 8.b shows the average latency, and Figure 8.c shows
the 99th percentile latency when we vary the percentage of
requests that are handled by a specific shard. For ease of com-

50 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

LoLKV Mu DARE APUS uKharon

0 30 50 70 90
Percentage of Operations (%)

(a)

0
1
2
3
4
5

Th
ro

ug
hp

ut
 (M

op
s)

0 30 50 70 90
Percentage of Operations (%)

(b)

0

200

400

600

Av
er

ag
e

La
te

nc
y

(u
s)

0 30 50 70 90
Percentage of Operations (%)

(c)

250

500

750

1000

La
te

nc
y

- 9
9t

h
%

ile
 (u

s)

Figure 8: Throughput (a), average latency (b), and 99th tail latency (c) when changing the percentage of requests targeting a
shard under write-only workload.

LoLKV Mu DARE APUS uKharon

0.5 0.6 0.7 0.8 0.9 1.0
Read Operations Percentage

(a)

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (M

op
s)

0.5 0.6 0.7 0.8 0.9 1.0
Read Operations Percentage

(b)

20

40

60
Av

er
ag

e
La

te
nc

y
(u

s)

0.5 0.6 0.7 0.8 0.9 1.0
Read Operations Percentage

(c)

0

100

200

300

La
te

nc
y

- 9
9t

h
%

ile
 (u

s)

Figure 9: Throughput (a), average latency (b), and 99th tail latency (c) of different systems when varying the percentage of read
requests.

parison, Figure 8 also shows the performance when requests
are uniformly distributed among shards ("U" in Figure 8).
Results show a significant degradation in the performance of
DARE, Mu, uKharon, and APUS. For instance, comparing the
uniform distribution to when 50% of requests are served by
one shard, the throughput of DARE, uKharon, Mu, and APUS
is reduced by 61%, 52%, 45%, and 62%, respectively. Simi-
larly, the average latencies of DARE, uKharon, Mu, and APUS
are 5.3× , 3.4×, 4.5×, and 5.9× their average latencies with
uniform distribution, and their 99th percentile latencies are
2.7×, 3.2×, 4×, and 2.8× of their 99th percentile latencies
with uniform request distribution.

LoLKV’s performance is not affected by the workload
skewness because LoLKV does not shard the key space
among worker threads and all threads can participate in serv-
ing requests for popular objects. Concurrent put operations
on the same key can be committed in parallel by different
threads. Concurrent updates are ordered when updating the
hash table. For all other systems, the commit and apply oper-
ations are serialized when there are concurrent updates to the
same key and all operations for a popular key are handled by
a single shard while other shards could be idle.

6.4 Read-to-Write Ratio
Figure 9 shows the throughput, the average latency, and the
99th percentile latency when varying the get requests per-
centage. Increasing the percentage of get requests increases
the throughput and lowers the latency of all systems as get
requests are served by the leader in all systems. Nonetheless,
LoLKV outperforms other systems for all read-to-write ra-
tios. For instance, when 70% of requests are get requests,

LoLKV achieves 2.8×, 2.75×, 4× and 6.3× higher through-
put compared to DARE, uKharon, Mu, and APUS, respec-
tively. LoLKV outperforms Mu and uKharon for read-only
workloads because LoLKV uses higher number of threads to
serve requests. DARE polls one request at a time which limits
its throughput even under read-only workloads.

6.5 LoLKV Failover

In Figure 10, we evaluate the recovery time of LoLKV when
the leader fails, including the time it takes to elect a new leader
and perform data consolidation. In this experiment, we use
the same uniform write-only workload we use in Figure 4.a
with the configuration that achieves the maximum throughput
of 5.7 Mops. We kill the leader process at the 50 ms mark.
The throughput drops to zero when the leader fails and the
system remains unavailable until a new leader is elected.

The total recovery time is around 4.5ms. Detecting the
leader failure and electing a new leader takes around 1.4ms.
This is dominated by waiting for 3 heartbeat periods (300µs
each) to start leader election. Around 3ms are spent bringing
the new leader up-to-date. Once the new leader is active, the
throughput of the system returns to 5.7 Mops. We note that the
current implementation of LoLKV is not optimized for fast
failure recovery. For instance, in the current implementation
one thread sequentially performs data consolidation for all
thread segments before the leader can begin serving client
requests. This can be parallelized by making each thread
update the segments it owns. We will explore optimizing
failure recovery in future work.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 51

0
1
2
3
4
5
6

0 10 20 30 40 50 60 70 80 90 100

Th
ro

u
gh

p
u

t
(M

o
p

s)

Time (ms)
Figure 10: Recovery time of LoLKV.

6.6 Scalability
In this section, we evaluate the scalability as we increase
the number of shards or threads. We deploy the systems on
three nodes and uniformly distribute shard leaders across
nodes, i.e., each node is a leader for one third of the shards
and a follower for others. Figure 11 shows the throughput of
different systems with increasing number of shards/threads.
The results show that LoLKV can scale to efficiently use
all hardware threads (i.e., 24 threads) on the three machines
and achieve up to 18 Mops which is 4× higher than DARE,
7× higher than uKharon, 10× higher than Mu, and over 36×
higher than APUS. LoLKV’s performance drops when having
more than 24 threads due to fully utilizing all CPU cores.

LoLKV efficiently use all CPU cores because followers
in LoLKV are not active during normal operations. Conse-
quently, all available CPU cores on each node are used to host
leader shards serving client requests. The other systems do
not scale as well because each node is a leader for n shards
and a follower for 2×n shards. Thus, two thirds of a node’s
resources are used by follower processes. Furthermore, in Mu,
uKharon and APUS not all threads are used for processing
client requests. For each shard process, Mu uses 4 threads
on the leader and 4 on each follower, out of which only one
of the leader’s threads processes client requests. APUS and
uKharon use 2 threads on the leader and every follower per
shard. DARE is a single-threaded system and thus it scales to
a larger number of shards. Each DARE shard uses one thread
on the leader and each follower.

7 Additional Related Work
Consensus optimizations. Numerous software-based ap-
proaches towards optimizing consensus protocols exist in cur-
rent literature. EPaxos [24] is a leaderless replication protocol
designed to optimize commit latencies. CURP [25] utilizes
commutativity to improve replication speeds. While these op-
timizations improve performance, they still result in latencies
in the hundreds of microseconds or millisecond ranges.
Network-accelerated consensus. FLAIR [26], NetChain
[27] and NetPaxos [28] utilize programmable switches to
accelerate consensus. However, FLAIR only optimizes read
operations while NetChain and NetPaxos are only suitable
for systems with data sizes of a few megabytes or less.
Micro-scale optimizations. Several software optimizations
have been developed to support microsecond range workloads,

LoLKV Mu DARE APUS uKharon

1 4 7 10 13 16 19 22 25 28 31
Number of Threads/Shards

10−1

100

101

Th
ro

ug
hp

ut
 (M

op
s)

Figure 11: The throughput of different systems when varying
the number of shards/threads with leaders distributed on three
nodes.

such as low-latency network stacks [29, 30] and intra-node
schedulers [31, 32]. These optimizations are orthogonal to
LoLKV, as we explore a novel design for micro-scale lineariz-
able key-value storage.
Unreplicated RDMA KV Stores. The clients in Pilaf [13]
and XStore [14] use RDMA to access server-side data struc-
tures to reduce latency. HERD [12] uses RDMA writes when
clients submit requests to the server. The server polls these
requests for processing. To leverage multi-core machines,
scaling these systems requires key-space sharding and pro-
cessing all requests for a shard by a thread/process.
Distributed Transactional Systems. DrTM [33] and
DrTM+R [34] use RDMA and hardware transactional mem-
ory to support distributed transactions. RDMA-based CAS
operations are used to replicate local transactions supported
by HTM. These works are orthogonal to ours as we focus on
using RDMA to build a logless replicated key-value store.

8 Conclusion

We present LoLKV, a novel logless key-value storage system
which provides data replication and linearizability guaran-
tees while avoiding the shortcomings of modern log-based
key-value stores. LoLKV uses multi-threading to scale and
handle client requests, applies operations directly to the un-
derlying data structures of the object store, and uses RDMA
to accelerate its operations. LoLKV followers are passive,
enabling the efficient use of their resources. Our evaluation
shows that LoLKV achieves significantly lower tail latency
and higher throughput compared to the state-of-the-art sys-
tems. LoLKV shows that strong consistency guarantees can
be achieved without being restricted to classical log-based
consensus designs.

Acknowledgments

We thank Alex Kogan, Mina Tahmasbi Arashloo, and the
anonymous reviewers for their insightful feedback. This re-
search was supported by grants from Oracle and NSERC.
Ahmed Alquraan is supported by an IBM PhD fellowship.

52 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Xinhui Tian, Rui Han, Lei Wang, Gang Lu, and Jianfeng

Zhan. Latency critical big data computing in finance.
The Journal of Finance and Data Science, 1(1):33–41,
2015.

[2] Stephen F. Elston and Melinda J. Wilson. Big data and
smart trading. https://www.risktech-forum.com/
media/download/61681/download.

[3] Sol Boucher, Anuj Kalia, David G. Andersen, and
Michael Kaminsky. Putting the "micro" back in mi-
croservice. In 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18), pages 645–650, Boston, MA,
July 2018. USENIX Association.

[4] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, 2013.

[5] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi,
and Heming Cui. Apus: Fast and scalable paxos on
rdma. In Proceedings of the 2017 Symposium on Cloud
Computing, SoCC ’17, page 94–107, New York, NY,
USA, 2017. Association for Computing Machinery.

[6] Marius Poke and Torsten Hoefler. Dare: High-
performance state machine replication on rdma net-
works. In Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed
Computing, HPDC ’15, page 107–118, New York, NY,
USA, 2015. Association for Computing Machinery.

[7] Marcos K. Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra J. Marathe, Athanasios Xygkis, and Igor
Zablotchi. Microsecond consensus for microsecond ap-
plications. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
599–616. USENIX Association, November 2020.

[8] Rachid Guerraoui, Antoine Murat, Javier Picorel,
Athanasios Xygkis, Huabing Yan, and Pengfei Zuo.
uKharon: A membership service for microsecond appli-
cations. In 2022 USENIX Annual Technical Conference
(USENIX ATC 22), pages 101–120, Carlsbad, CA, July
2022. USENIX Association.

[9] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
annual technical conference (USENIX ATC 14), pages
305–319, 2014.

[10] Leslie Lamport. Paxos made simple. 2001.

[11] Diego Didona and Willy Zwaenepoel. Size-aware shard-
ing for improving tail latencies in in-memory key-value
stores. In NSDI, pages 79–94, 2019.

[12] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Using rdma efficiently for key-value services. SIG-
COMM Comput. Commun. Rev., 44(4):295–306, aug
2014.

[13] Christopher Mitchell, Yifeng Geng, and Jinyang Li.
Using One-Sided RDMA reads to build a fast, CPU-
Efficient Key-Value store. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13), pages 103–
114, San Jose, CA, June 2013. USENIX Association.

[14] Xingda Wei, Rong Chen, and Haibo Chen. Fast RDMA-
based ordered Key-Value store using remote learned
cache. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pages 117–
135. USENIX Association, November 2020.

[15] Rajkumar Buyya, Toni Cortes, and Hai Jin. An introduc-
tion to the infiniband architecture. In High Performance
Mass Storage and Parallel I/O: Technologies and Appli-
cations, pages 616–632, 2002.

[16] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Design guidelines for high performance RDMA
systems. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 437–450, Denver, CO, June
2016. USENIX Association.

[17] Robbert Van Renesse and Deniz Altinbuken. Paxos
made moderately complex. ACM Computing Surveys
(CSUR), 47(3):1–36, 2015.

[18] Emery D. Berger, Kathryn S. McKinley, Robert D. Blu-
mofe, and Paul R. Wilson. Hoard: A scalable memory
allocator for multithreaded applications. SIGPLAN Not.,
35(11):117–128, nov 2000.

[19] C. Gray and D. Cheriton. Leases: An efficient fault-
tolerant mechanism for distributed file cache consistency.
In Proceedings of the Twelfth ACM Symposium on Op-
erating Systems Principles, SOSP ’89, page 202–210,
New York, NY, USA, 1989. Association for Computing
Machinery.

[20] Diego Ongaro. LogCabin.
https://github.com/logcabin/logcabin.

[21] Leslie Lamport. The TLA+ Home Page.
https://lamport.azurewebsites.net/tla/tla.html.

[22] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The Design
and Operation of Cloudlab. In Proceedings of the 2019
USENIX Conference on Usenix Annual Technical Con-
ference, pages 1–14, 2019.

USENIX Association 21st USENIX Symposium on Networked Systems Design and Implementation 53

https://www.risktech-forum.com/media/download/61681/download
https://www.risktech-forum.com/media/download/61681/download

[23] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, pages 143–154,
2010.

[24] Iulian Moraru, David G Andersen, and Michael Kamin-
sky. There is more consensus in egalitarian parliaments.
In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pages 358–372, 2013.

[25] Seo Jin Park and John K Ousterhout. Exploiting com-
mutativity for practical fast replication. In NSDI’19,
pages 47–64, 2019.

[26] Hatem Takruri, Ibrahim Kettaneh, Ahmed Alquraan,
and Samer Al-Kiswany. Flair: Accelerating reads with
consistency-aware network routing. In NSDI’20, pages
723–737, 2020.

[27] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. Netchain: Scale-free sub-rtt coordination. In
15th {USENIX} Symposium on Networked Systems De-
sign and Implementation ({NSDI} 18), pages 35–49,
2018.

[28] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-
nando Pedone, and Robert Soulé. Netpaxos: Consensus
at network speed. In Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking
Research, pages 1–7, 2015.

[29] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. Proceedings of the 26th Symposium
on Operating Systems Principles, pages 325–341, 2017.

[30] Dominik Scholz. A look at intel’s dataplane devel-
opment kit. https://api.semanticscholar.org/
CorpusID:11483651, 2014.

[31] Sarah McClure, Amy Ousterhout, Scott Shenker, and
Sylvia Ratnasamy. Efficient scheduling policies for
Microsecond-Scale tasks. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion (NSDI 22), pages 1–18, Renton, WA, April 2022.
USENIX Association.

[32] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for usecond-scale tail
latency. pages 345–360, 2019.

[33] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using rdma and htm. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles, SOSP ’15, page

87–104, New York, NY, USA, 2015. Association for
Computing Machinery.

[34] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and
Haibo Chen. Fast and general distributed transactions
using rdma and htm. In Proceedings of the Eleventh Eu-
ropean Conference on Computer Systems, EuroSys ’16,
New York, NY, USA, 2016. Association for Computing
Machinery.

54 21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://api.semanticscholar.org/CorpusID:11483651
https://api.semanticscholar.org/CorpusID:11483651

	Introduction
	Background and Related Work
	Remote Direct Memory Access
	RDMA-based Consensus

	LoLKV Design
	Segment Store
	Segment Metadata
	Owning a Segment
	Sealing and Releasing a Segment

	Hash Table
	Replication Protocol
	Worker Thread Metadata
	Put Requests
	Concurrent Put Requests to the Same Key
	Get Requests
	Delete Requests

	Leader Election
	Fault Tolerance

	Implementation Details
	Garbage Collection
	Reusing Tombstones

	Correctness
	Correctness of the Hash Table

	Evaluation
	Performance Evaluation
	Latency Evaluation
	Workload Skewness
	Read-to-Write Ratio
	LoLKV Failover
	Scalability

	Additional Related Work
	Conclusion

