
Falcon – Low Latency, Network-Accelerated Scheduling 

ABSTRACT 

We present Falcon, a novel scheduler design for large scale data 
analytics workloads. To improve the quality of the scheduling 
decisions, Falcon uses a single central scheduler. To scale the 
central scheduler to support large clusters, Falcon offloads the 
scheduling operation to a programmable switch. The core of the 
Falcon design is a novel pipeline-based scheduling logic that can 
schedule tasks at line-rate. Our prototype evaluation on a cluster 
with a Barefoot Tofino switch shows that the proposed approach 
can reduce scheduling overhead by 26 times and increase the 
scheduling throughput by 25 times compared to state-of-the-art 
centralized and decentralized schedulers. 

CCS Concepts 
 Networks → Network services → In-network processing;  
 Networks → Network services → Cloud computing; 

KEYWORDS 
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1. Introduction 
Recent increased adoption of real-time analytics [1, 2] is pushing 
the limits of traditional data processing frameworks [3]. 
Applications such as real-time object recognition [4], real-time 
fraud detection [1], IoT applications [1], and video quality 
prediction [5] require processing millions of events per second 
and aim to provide a processing latency of a few milliseconds. 

To support very short tasks that take tens of milliseconds, the 
scheduling throughput must be quite high. For a cluster of one 
thousand 32-core nodes, the scheduler must make more than 6 
million scheduling decisions per second. Furthermore, for such 
tasks, scheduling delays beyond 1 ms are intolerable. 

Traditional data processing frameworks use centralized schedulers 
[6, 7]. Although the centralized scheduler has accurate knowledge 
about the utilization of each node in the cluster and can make 
precise scheduling decisions, it cannot scale to process thousands 
of status reports from cluster nodes and millions of scheduling 
decisions [5, 8]. For instance, Firmament [9], the state-of-the-art 
centralized scheduler can only support a cluster with 100 nodes 

for short real time tasks [9]. 

To overcome the limitations of a centralized scheduler, large scale 
data analytics engines [8, 10, 11, 12] have adopted a distributed 
scheduling approach. This approach employs tens of schedulers to 
increase scheduling throughput and reduce scheduling latency. 
These schedulers do not have accurate information about the load 
in the cluster, they either use stale cluster data or probe a random 
subset of nodes to find nodes to run a given set of                     
tasks [8, 10, 11]. The disadvantage of this approach is that the 
scheduling decisions are suboptimal, as they are based on partial 
or stale information, and the additional probing step increases the 
scheduling delay. Furthermore, this approach is inefficient as it 
requires using tens of nodes to run the schedulers. For instance, 
Sparrow uses a scheduler node for every 10 backend nodes and 
still takes 2 ms to 10 ms to schedule a task [10]. 

We present Falcon, a scheduling approach that can support large-
scale clusters while significantly reducing scheduling latency. 
Falcon adopts a centralized scheduling approach to eliminate the 
probing overhead, avoid using tens of scheduling nodes, and make 
precise scheduling decisions. To overcome the processing 
limitations of a single-node scheduler, Falcon offloads the 
scheduler to a network switch.  

Recent programmable switches [13] can forward over 5 billion 
packets per second, making them ideal candidates for 
implementing a centralized scheduler for large scale clusters. 
Unfortunately, leveraging modern switch capability is 
complicated by their restrictive programming and memory model. 
In particular, the restrictive memory model allows for performing 
a single operation on a memory location only once per packet. 
Consequently, even implementing a simple task queue is 
complicated, as standard queue operations will access the queue 
size twice: once to check whether the queue is empty or full, and 
once to increment or decrement its size.  

Central to Falcon’s design is a novel P4-compatible circular task 
queue data structure that allows for retrieving a task in one round 
trip time and supports adding large lists of tasks (§4). 

To demonstrate the powerful capabilities of the proposed 
approach, we built a Falcon prototype. Our evaluation on a cluster 
with a Barefoot Tofino switch [13] shows that Falcon can reduce 
scheduling overhead by up to 26 times and for short tasks it 
improves the task execution time by 14% compared to 
state-of-the-art scheduler. 

2. Overview of Scheduler Design 
Modern data analytics frameworks adopt the micro batch 
scheduling model [6, 9, 10]. The analytics framework submits 
jobs that consist of m independent tasks (m is typically a small 
number between 8 and 64). A job is considered complete when all 
the task in the job have finished execution. 
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2.1 Centralized Scheduler Design 
Having a single centralized scheduler that maintains accurate 
cluster status information can result in high quality scheduling 
decisions [5, 6, 9, 14]. Unfortunately, this design cannot perform 
millions of scheduling decisions per second to support large scale 
clusters. For instance, Firmament [9], a state-of-the-art centralized 
scheduler, models the scheduling problem as a graph with edges 
extended from tasks to executors that can run them. Firmament 
uses a min-cost max-flow solver to find the best mapping from 
tasks to executors. Every time a new job is submitted (Figure 1), 
the task graph is updated and the graph solver is executed on the 
new graph. Despite optimizing the solver implementation, the 
Firmament authors report that it cannot scale beyond a cluster 
with 1200 CPU cores (100 12-core nodes in their paper) with real 
time workloads. 

Apache Spark [6] also uses a centralized scheduler design. Our 
evaluation (§5) and the authors of Sparrow [10] show that Spark 
suffers infinite queuing when task runtime falls below 1.5 
seconds.  

2.2 Distributed Scheduler Design 
Modern distributed schedulers [8, 10, 12] base their scheduling 
decisions on stale cluster status or on sampling a subset of cluster 
nodes. For instance, in Sparrow [10], the state of the art 
distributed scheduler, to schedule a job with m tasks, the scheduler 
submits probes to 2m randomly selected executors (Figure 2). For 
instance, if the job has 32 tasks, the scheduler probes 64 out of 
potentially hundreds of nodes in the cluster. The executors queue 
the probes. When an executor completes its current task, it 
dequeues a probe, retrieves the task from the scheduler and 
executes it. This probing technique is necessary, as the scheduler 
does not have complete knowledge of the cluster utilization. After 
completing m tasks, the scheduler proactively cancels the extra 
probes or discards future requests for task retrieval for those 
probes. 

This approach has two shortcomings: first, as the scheduler only 
probes a small subset of nodes in the cluster, its scheduling 
decisions are inferior. Second, the probing step increases the 
scheduling latency. 

3. Falcon Overview 
Falcon is an in-network centralized scheduler that can assign tasks 
precisely to free executors with minimal overhead. Figure 4 shows 
Falcon’s architecture, which consists of backend nodes, client 
nodes and a centralized programmable switch. 

3.1 Falcon Client 
Similar to Spark [6] and Sparrow [10], a data analytics framework 
groups independent tasks into jobs and submits these jobs to the 
scheduler. The data analytics framework is a client of the 
scheduler. In the rest of the paper we use the term client and data 
analytics framework interchangeably. Once all the tasks in their 
job finish execution, clients submit their next jobs. As in current 
data analytics frameworks, clients are responsible for tracking 
data dependency between tasks and resubmitting failed            
tasks [6, 10]. 

3.2 Executors 
Figure 3 shows the scheduling steps in Falcon. When an executor 
becomes free, it sends a message to the scheduler to request a new 
task. Thus, the scheduler only assigns tasks to free executors, 
effectively avoiding head-of-line blocking. If the scheduler has no 
tasks, it sends a no-op task to the executor. The executor waits for 
a configurable period of time before requesting a task again. 

3.3 Programmable Switch 
Falcon uses a centralized in-network scheduler. The switch 
receives job descriptions that include a list of tasks  (Figure 4). 
The switch adds these tasks to a circular queue. The switch 
assigns a task in first-come-first-serve order to the next executor 
that requests a task. 

Despite its simplicity, implementing this design on modern 
programmable switches is challenging due to their restrictive 
programming model. 

3.4 Deployment Approach 
As with previous projects that leverage switch                     
capabilities [15, 16, 17, 18], the network controller installs 
forwarding rules to forward all job submission tasks through a 
single switch; that switch will run the Falcon scheduler. The 
controller typically selects a common ancestor switch of all 

Figure 1.  Firmament’s 
scheduling timeline 

Figure 2.  Sparrow’s 
scheduling timeline 

Figure 3. Falcon’s scheduling timeline 

 

Figure 4. Falcon’s architecture 



executors. While this approach may create a longer path than 
traditional forwarding, the effect of this change is minimal. Li et 
al. [17] reported that for 88% of cases, there is no additional 
latency, and the 99th percentile had less than 5 µs of added 
latency. 

4. System Design 
4.1 Network Protocol 
Falcon introduces an application-layer protocol embedded in 
packets’ L4 payload. Similar to other systems that use 
programmable switches [15, 16, 17], Falcon uses UDP to reduce 
operation latency and simplify the scheduler design. 

Falcon introduces two new packet headers: job_submission, which 
is used to submit a new job to the scheduler, and task_assignment 
packet used to send a task to an executor. A single job may span 
multiple job_submission  packets.  We briefly discuss these 
headers in this section. The next subsections detail our design. 

Figure 5 shows the main fields of the job_submission packet: 

 OP: the request type: job submission or task assignment. 

 UID: the user ID.  

 JID: the job ID. The <UID, JID> combination represents a unique 
job identifier. 

 #TASKS: the number of tasks in the job. The switch uses this 
field to parse the job submission packet properly. 

 A list of TASK_INFO metadata for all the tasks in the job. 

The task information (TASK_INFO) includes the following: 

 TID: a task identifier within a job. The tuple <UID, JID, TID> is a 
unique identifier for any task the system. 

 TDESC: the task description that determines the task to be 
executed. 

To assign a task to an executor, the switch sends a 
task_assignment packet to the executor. The task_assignment 
header contains the TASK_INFO of a task, as well as the client IP 
address and port number. 

4.2 Scheduler Design 
Falcon stores tasks (i.e., TASK_INFO) in a switch register as a 
circular queue. Each queue entry has the following fields: 
TASK_INFO, client_IP, and client_port, as well as an is_valid flag 
that indicates whether the entry has been scheduled. The size of 
the queue in our implementation is 128K. The circular queue has 
two 32-bit pointers: add_ptr and retrieve_ptr. The add_ptr points 
to the next empty queue entry in which a new task can be inserted. 
The retrieve_ptr points to the next task to be scheduled. 

Each pointer comprises two parts: <round_num,  index>. The 17-
bit index points to an entry in the queue. The 15-bit round_num 
counts the number of rounds the pointer traversed the entire 
queue. This round number helps to resolve special cases when the 
queue is full or empty.  

To detect whether the queue is full or empty we subtract the 
retrieve_ptr from the add_ptr. If the difference is zero, the queue 
is empty. If the difference is equal to or larger than the queue size, 
the queue is full. In some cases, the difference is negative, 
meaning the retrieve_ptr is larger than the add_ptr, in which case 
the pointers need an adjustment. We discuss this below. 

In the standard circular queue implementation, to enqueue a new 
task, one typically checks whether the queue is full by computing 
the difference between the pointers. If the queue is not full, the 
new task is added to the queue and add_ptr is incremented. 
Unfortunately, this design cannot be implemented on current 
switches because it accesses add_ptr twice; it checks the pointer, 
then possibly increments it. The dequeue operation faces a similar 
challenge. 

Because it can access a pointer only once per packet, Falcon uses 
an atomic read_and_increment(add_ptr) to read add_ptr and 
increment it in one access. It then checks whether the queue is 
full. If the queue is not full, Falcon uses the add_ptr value to add 
a task to the queue. This approach increments add_ptr even when 
the queue is full. Similarly, to dequeue a task, Falcon calls 
read_and_increment(retrieve_ptr) and increments retrieve_ptr 
even when the queue is empty. In these cases, the pointers must be 
corrected, but because the pointer can only be accessed once per 
packet, the correction must be made in a future packet. We discuss 
how to detect and correct incorrect pointers later in this section.  

4.3 Handling Job Submission 
The client submits a job by populating the header of a 
job_submission packet (Figure 5) and sending the packet to the 
switch. The switch then enqueues the job’s tasks. 

Two switch limitations complicate adding a set of tasks to the 
queue: modern switches do not permit loops or recursion, and the 
scheduler can access a register (the queue) only once per packet. 
To work around these limitations, Falcon checks the #TASKS field 
in the packet. If it is larger than zero, it removes the first task from 
the packet’s list of tasks, calls read_and_increment(add_ptr), then 
adds the task to the queue.  

Adding Multiple Tasks. The job_submission packet (Figure 5) 
contains a list of tasks. To add multiple tasks to the queue, Falcon 
leverages packet recirculation, i.e., the ability to resubmit a packet 
from the egress pipeline to the ingress pipeline and process it 
again like a new packet. The scheduler removes the first task from 
the task list (TASK  INFO1 in Figure 5) in the job_submission 
packet, decrements the #TASKS field, and recirculates the packet. 
Falcon continues to recirculate the packet until #TASKS is zero.  

Handling a Full Queue. When enqueueing a new task, the 
scheduler calls read_and_increment(add_ptr), then compares 

Figure 5. Falcon’s job_submission header 



add_ptr and retrieve_ptr to determine whether the queue is full. If 
the queue is not full, the scheduler adds the task to the queue. If 
the queue is full, the scheduler does not add the task and sends an 
error packet to the client. The error packet contains the list of 
tasks that are not added to the queue. The client then retries 
submitting a new job after a while. 

4.4 Handling Task Retrieval 
To avoid head-of-line blocking, executors retrieve tasks only 
when they become free. To retrieve a task, an executor sends a 
request to the switch. The scheduler calls 
read_and_increment(retrieve_ptr)  and reads one task from the 
queue. If the task’s is_valid flag is true, the task is sent to the 
executor, and the is_valid flag is set to false (this is done in one 
access with read_and_set(is_valid, false)). Otherwise, if the 
is_valid flag is false, this indicates that the queue is empty. In this 
case, the retrieve request is ignored, and the executor repeats the 
request after a while. 

4.5 Pointer Correction 
When the scheduler receives a job submission packet, it executes 
read_and_increment(add_ptr) first, then checks whether the 
queue is full.  If the queue is full, incrementing the add_ptr was a 
mistake. To correct this mistake, the scheduler recirculates a 
repair packet to reset the add_ptr to its original value. To avoid a 
case in which multiple job_submission packets try to reset the 
add_ptr, we added a Boolean flag (is_repairing_add_ptr) to 
ensure the scheduler only recirculates one repair packet. 

Similarly, task retrieval operations call 
read_and_increment(retrieve_ptr), then check whether the 
retrieved task is valid. If the retrieved task is invalid (which 
indicates that the queue is empty), incrementing the pointer was a 
mistake. We leave this pointer until the next job_submission 
packet is received. When the next job_submission request is 
received, the scheduler adds the first task in the queue. The 
scheduler then checks if the retrieve_ptr needs adjusting, i.e., if 
the retrieve_ptr  is larger than add_ptr. If the retrieve_ptr needs 
adjusting, the scheduler recirculates a packet and sets the 
retrieve_ptr to equal the index of the newly added task. A 
Boolean flag (is_repairing_retrieve_ptr) is set to ensure the 
scheduler only recirculates one repair packet. 

4.6 Fault Tolerance 
The switch maintains a soft state. On switch failure a new switch 
is selected to run the scheduling pipeline. The clients will timeout 
on all previous submitted tasks and will resubmit those tasks. As 
with the current frameworks [6, 10] if a tasks fails due to executor 
or communication failure, the client resubmits the task. 

Similarly, if a job submission packet or a task completion packet 
are lost, the sender will resubmit the packet. This may lead to 
double execution of a task. As our tasks are idempotent this does 
not affect correctness but may lead to a loss of efficiency. 

5. Evaluation 
We compare the performance of Falcon against that of state of the 
art centralized and distributed schedulers. 

Testbed. We perform all experiments on a 12-node cluster. Each 
node has 48GB of RAM, an Intel Xeon Silver 10-core CPU, and a 
100 Gbps Mellanox NIC. The nodes are connected by an 
Edgecore Wedge switch with a Barefoot Tofino ASIC. In all 
experiments, we use 10 nodes as backend nodes (to host 
executors) and 2 nodes as client nodes. Unless otherwise 
specified, each backend node runs 6 executors (i.e., a total of 60 
executors). For Sparrow, we run two schedulers on the client 
nodes, a configuration that is favorable to Sparrow because it 
reduces communication latency between the client and the 
collocated scheduler. 

Workload. We use a synthetic workload similar to the one used 
to evaluate Sparrow [10]. Each client submits a job every 10 ms, 
and each job contains a set of 10-ms tasks. We vary the number of 
tasks per job to change the system utilization.  

Alternatives. We compare Falcon with Sparrow, the state-of-the-
art distributed scheduler. Our evaluation of Sparrow reveals that 
its implementation is not efficient due to using Java and RPCs. 
We reimplemented Sparrow in C++ using raw sockets. Our C++ 
implementation achieves up to 25 times higher throughput and 2 
times lower latency than the original Java implementation. For the 
rest of our evaluation we use our C++ implementation of Sparrow. 

We also evaluated Spark’s scheduling delay. Unfortunately, Spark 
did not scale well beyond 50% utilization: this confirms a similar 
observation made in the Sparrow paper [10]. The scheduling delay 
at 50% was 3 seconds. Above 50% utilization, the scheduler could 
not keep up and experienced infinite queueing. We did not include 
Spark in our figures for clarity. 

Finally, we experimented with Firmament. Unfortunately, the 
Firmament open source implementation could not run our 
workloads with millisecond tasks. We are currently debugging 
this deployment. Nevertheless, Firmament authors report that it 
cannot scale for more than 100 nodes with 5 ms tasks which 

 

Figure 6. Scheduling 
Throughput. The y-axis is 
plotted in millions of tasks per 
second. 

Figure 7. Job Latency for 
various utilization rates. The 
error bars depict the 5th and 
95th percentiles. 
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roughly equates to a peak throughput of under 400k scheduling 
decisions per second. 

5.1 Scheduling Throughput 
Figure 6 shows the throughput of Falcon and two configurations 
of Sparrow C++, with 1 sparrow scheduler and with 4 sparrow 
schedulers. The throughput of a single sparrow scheduler 
represents the performance of a highly optimized software-based 
centralized scheduler. To increase the load on the scheduler we 
ran no-op tasks and increased the number of executors (shown on 
x-axis in Figure 6). An executor continuously receives task 
information, drops it, and then requests a new task. Figure 6 
shows that Sparrow, even with 4 schedulers, is not able to support 
more than 500 executors, with its throughput peaking at 1.9 
million scheduling decisions per second. On the other hand, our 
cluster is too small to stress Falcon enough. With 800 executors, 
Falcon achieves over 23 million scheduling operations per second 
(equivalent to over 40 Sparrow schedulers). The switch data sheet 
indicates that the switch can handle over 5 billion packets per 
second, indicating that Falcon’s performance limit is significantly 
higher than the workload our no-op executors can generate.  

5.2 Job Scheduling Delays 
Figure 7 shows the job scheduling delays for various system 
utilization levels. Falcon significantly reduces the scheduling 
delay at all utilization levels. At the 95% utilization rate, Falcon 
reduces the median scheduling delay by 18.5 times (0.09 ms 
compared to 1.76 ms for Sparrow) and the 95th percentile by 11.8 
times (0.25 ms compared to 3.22 ms for Sparrow). Even at 50% 
utilization, Falcon reduces the scheduling delay by up to 6.8 
times. Furthermore, unlike Sparrow, Falcon’s median delays did 
not change as the utilization reaches 95% because Falcon can 
easily handle billions of packet and process requests at line-rate, 
whereas the scheduling overhead increases in Sparrow with larger 
jobs and higher utilization. 

5.4 Scheduling Overhead Breakdown  
To understand the performance differences between Falcon and 
Sparrow, we measure the time spent on each step of both 
protocols. Figure 8 shows the CDF of every step of Falcon and 
Sparrow scheduling protocols, respectively, when running the 
system at 80% utilization. The figure shows the high impact of 
network acceleration. Falcon completes all scheduling steps in 
under 100 s, whereas Sparrow took up to 3.11 ms. Although the 
reservation delay is unique to Sparrow, task retrieval and 
queueing delays are unavoidable regardless of the scheduling 
approach. Comparing the delay of these two steps shows that 
network acceleration brings up to 26 times higher performance 
improvement. This significant performance improvement 
eliminates the need for multiple schedulers and shows that a 
single central scheduler can scale to support large clusters. 

6. Related Work 
Hybrid Schedulers. A few systems such as Hawk [11] and 
Mercury [19] use a hybrid scheduling approach. These consist of a 
centralized scheduler to handle long-running batch jobs and a 

distributed scheduler to support low-latency scheduling. 
Unfortunately, this approach still results in low-quality scheduling 
decisions. 

Network-Accelerated Systems. Recent projects have utilized 
programmable switches to accelerate consensus protocols [17, 20, 
21, 22], implement in-network caching [23], DNN training and 
inferencing [24], and in-network aggregation operations [25]. 
R2P2 [26] is the closest of these efforts to our design. R2P2 build 
a load balancer for RPC calls. R2P2 does not maintain a task 
queue but rather aims to immediately submit an incoming RPC to 
a server. If no server is available, R2P2 recirculates the packet 
until a server becomes available. This approach is not efficient 
with data analytics workloads that experiences burstiness in task 
arrivals. Furthermore, R2P2 does not guarantee FIFO ordering or 
scheduling decision optimality. Falcon presents a P4-compatible 
queue design that overcomes these inefficiencies. 

7. Concluding Remarks and Future Work 
We presented Falcon, a centralized in-network scheduler that can 
assign tasks to the next available executor at line-rate and scale to 
process billions of requests per second. Our evaluation shows that 
Falcon can reduce scheduling overhead by an order of magnitude 
and achieve higher throughputs compared to current state-of-the-
art low-latency schedulers. 

In our ongoing work, we are extending the scheduler to support 
three common scheduling policies: data locality-aware scheduling, 
priorities, and scheduling on nodes with specific resources. 
Furthermore, we are building a simulator to evaluate Falcon at 
large scale. 
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