
Falcon – Low Latency, Network-Accelerated Scheduling

ABSTRACT

We present Falcon, a novel scheduler design for large scale data
analytics workloads. To improve the quality of the scheduling
decisions, Falcon uses a single central scheduler. To scale the
central scheduler to support large clusters, Falcon offloads the
scheduling operation to a programmable switch. The core of the
Falcon design is a novel pipeline-based scheduling logic that can
schedule tasks at line-rate. Our prototype evaluation on a cluster
with a Barefoot Tofino switch shows that the proposed approach
can reduce scheduling overhead by 26 times and increase the
scheduling throughput by 25 times compared to state-of-the-art
centralized and decentralized schedulers.

CCS Concepts
 Networks → Network services → In-network processing;
 Networks → Network services → Cloud computing;

KEYWORDS
Scheduling, programmable networks, large-scale cluster.

1. Introduction
Recent increased adoption of real-time analytics [1, 2] is pushing
the limits of traditional data processing frameworks [3].
Applications such as real-time object recognition [4], real-time
fraud detection [1], IoT applications [1], and video quality
prediction [5] require processing millions of events per second
and aim to provide a processing latency of a few milliseconds.

To support very short tasks that take tens of milliseconds, the
scheduling throughput must be quite high. For a cluster of one
thousand 32-core nodes, the scheduler must make more than 6
million scheduling decisions per second. Furthermore, for such
tasks, scheduling delays beyond 1 ms are intolerable.

Traditional data processing frameworks use centralized schedulers
[6, 7]. Although the centralized scheduler has accurate knowledge
about the utilization of each node in the cluster and can make
precise scheduling decisions, it cannot scale to process thousands
of status reports from cluster nodes and millions of scheduling
decisions [5, 8]. For instance, Firmament [9], the state-of-the-art
centralized scheduler can only support a cluster with 100 nodes

for short real time tasks [9].

To overcome the limitations of a centralized scheduler, large scale
data analytics engines [8, 10, 11, 12] have adopted a distributed
scheduling approach. This approach employs tens of schedulers to
increase scheduling throughput and reduce scheduling latency.
These schedulers do not have accurate information about the load
in the cluster, they either use stale cluster data or probe a random
subset of nodes to find nodes to run a given set of
tasks [8, 10, 11]. The disadvantage of this approach is that the
scheduling decisions are suboptimal, as they are based on partial
or stale information, and the additional probing step increases the
scheduling delay. Furthermore, this approach is inefficient as it
requires using tens of nodes to run the schedulers. For instance,
Sparrow uses a scheduler node for every 10 backend nodes and
still takes 2 ms to 10 ms to schedule a task [10].

We present Falcon, a scheduling approach that can support large-
scale clusters while significantly reducing scheduling latency.
Falcon adopts a centralized scheduling approach to eliminate the
probing overhead, avoid using tens of scheduling nodes, and make
precise scheduling decisions. To overcome the processing
limitations of a single-node scheduler, Falcon offloads the
scheduler to a network switch.

Recent programmable switches [13] can forward over 5 billion
packets per second, making them ideal candidates for
implementing a centralized scheduler for large scale clusters.
Unfortunately, leveraging modern switch capability is
complicated by their restrictive programming and memory model.
In particular, the restrictive memory model allows for performing
a single operation on a memory location only once per packet.
Consequently, even implementing a simple task queue is
complicated, as standard queue operations will access the queue
size twice: once to check whether the queue is empty or full, and
once to increment or decrement its size.

Central to Falcon’s design is a novel P4-compatible circular task
queue data structure that allows for retrieving a task in one round
trip time and supports adding large lists of tasks (§4).

To demonstrate the powerful capabilities of the proposed
approach, we built a Falcon prototype. Our evaluation on a cluster
with a Barefoot Tofino switch [13] shows that Falcon can reduce
scheduling overhead by up to 26 times and for short tasks it
improves the task execution time by 14% compared to
state-of-the-art scheduler.

2. Overview of Scheduler Design
Modern data analytics frameworks adopt the micro batch
scheduling model [6, 9, 10]. The analytics framework submits
jobs that consist of m independent tasks (m is typically a small
number between 8 and 64). A job is considered complete when all
the task in the job have finished execution.

Ibrahim Kettaneh1, Sreeharsha Udayashankar1, Ashraf Abdel-hadi1, Robin Grosman2, Samer Al-Kiswany1

1University of Waterloo, Canada 2Huawei Technologies, Canada

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
EuroP4 '20, December 1, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-8181-9/20/12…$15.00
https://doi.org/10.1145/3426744.3431322

2.1 Centralized Scheduler Design
Having a single centralized scheduler that maintains accurate
cluster status information can result in high quality scheduling
decisions [5, 6, 9, 14]. Unfortunately, this design cannot perform
millions of scheduling decisions per second to support large scale
clusters. For instance, Firmament [9], a state-of-the-art centralized
scheduler, models the scheduling problem as a graph with edges
extended from tasks to executors that can run them. Firmament
uses a min-cost max-flow solver to find the best mapping from
tasks to executors. Every time a new job is submitted (Figure 1),
the task graph is updated and the graph solver is executed on the
new graph. Despite optimizing the solver implementation, the
Firmament authors report that it cannot scale beyond a cluster
with 1200 CPU cores (100 12-core nodes in their paper) with real
time workloads.

Apache Spark [6] also uses a centralized scheduler design. Our
evaluation (§5) and the authors of Sparrow [10] show that Spark
suffers infinite queuing when task runtime falls below 1.5
seconds.

2.2 Distributed Scheduler Design
Modern distributed schedulers [8, 10, 12] base their scheduling
decisions on stale cluster status or on sampling a subset of cluster
nodes. For instance, in Sparrow [10], the state of the art
distributed scheduler, to schedule a job with m tasks, the scheduler
submits probes to 2m randomly selected executors (Figure 2). For
instance, if the job has 32 tasks, the scheduler probes 64 out of
potentially hundreds of nodes in the cluster. The executors queue
the probes. When an executor completes its current task, it
dequeues a probe, retrieves the task from the scheduler and
executes it. This probing technique is necessary, as the scheduler
does not have complete knowledge of the cluster utilization. After
completing m tasks, the scheduler proactively cancels the extra
probes or discards future requests for task retrieval for those
probes.

This approach has two shortcomings: first, as the scheduler only
probes a small subset of nodes in the cluster, its scheduling
decisions are inferior. Second, the probing step increases the
scheduling latency.

3. Falcon Overview
Falcon is an in-network centralized scheduler that can assign tasks
precisely to free executors with minimal overhead. Figure 4 shows
Falcon’s architecture, which consists of backend nodes, client
nodes and a centralized programmable switch.

3.1 Falcon Client
Similar to Spark [6] and Sparrow [10], a data analytics framework
groups independent tasks into jobs and submits these jobs to the
scheduler. The data analytics framework is a client of the
scheduler. In the rest of the paper we use the term client and data
analytics framework interchangeably. Once all the tasks in their
job finish execution, clients submit their next jobs. As in current
data analytics frameworks, clients are responsible for tracking
data dependency between tasks and resubmitting failed
tasks [6, 10].

3.2 Executors
Figure 3 shows the scheduling steps in Falcon. When an executor
becomes free, it sends a message to the scheduler to request a new
task. Thus, the scheduler only assigns tasks to free executors,
effectively avoiding head-of-line blocking. If the scheduler has no
tasks, it sends a no-op task to the executor. The executor waits for
a configurable period of time before requesting a task again.

3.3 Programmable Switch
Falcon uses a centralized in-network scheduler. The switch
receives job descriptions that include a list of tasks (Figure 4).
The switch adds these tasks to a circular queue. The switch
assigns a task in first-come-first-serve order to the next executor
that requests a task.

Despite its simplicity, implementing this design on modern
programmable switches is challenging due to their restrictive
programming model.

3.4 Deployment Approach
As with previous projects that leverage switch
capabilities [15, 16, 17, 18], the network controller installs
forwarding rules to forward all job submission tasks through a
single switch; that switch will run the Falcon scheduler. The
controller typically selects a common ancestor switch of all

Figure 1. Firmament’s
scheduling timeline

Figure 2. Sparrow’s
scheduling timeline

Figure 3. Falcon’s scheduling timeline

Figure 4. Falcon’s architecture

executors. While this approach may create a longer path than
traditional forwarding, the effect of this change is minimal. Li et
al. [17] reported that for 88% of cases, there is no additional
latency, and the 99th percentile had less than 5 µs of added
latency.

4. System Design
4.1 Network Protocol
Falcon introduces an application-layer protocol embedded in
packets’ L4 payload. Similar to other systems that use
programmable switches [15, 16, 17], Falcon uses UDP to reduce
operation latency and simplify the scheduler design.

Falcon introduces two new packet headers: job_submission, which
is used to submit a new job to the scheduler, and task_assignment
packet used to send a task to an executor. A single job may span
multiple job_submission packets. We briefly discuss these
headers in this section. The next subsections detail our design.

Figure 5 shows the main fields of the job_submission packet:

 OP: the request type: job submission or task assignment.

 UID: the user ID.

 JID: the job ID. The <UID, JID> combination represents a unique
job identifier.

 #TASKS: the number of tasks in the job. The switch uses this
field to parse the job submission packet properly.

 A list of TASK_INFO metadata for all the tasks in the job.

The task information (TASK_INFO) includes the following:

 TID: a task identifier within a job. The tuple <UID, JID, TID> is a
unique identifier for any task the system.

 TDESC: the task description that determines the task to be
executed.

To assign a task to an executor, the switch sends a
task_assignment packet to the executor. The task_assignment
header contains the TASK_INFO of a task, as well as the client IP
address and port number.

4.2 Scheduler Design
Falcon stores tasks (i.e., TASK_INFO) in a switch register as a
circular queue. Each queue entry has the following fields:
TASK_INFO, client_IP, and client_port, as well as an is_valid flag
that indicates whether the entry has been scheduled. The size of
the queue in our implementation is 128K. The circular queue has
two 32-bit pointers: add_ptr and retrieve_ptr. The add_ptr points
to the next empty queue entry in which a new task can be inserted.
The retrieve_ptr points to the next task to be scheduled.

Each pointer comprises two parts: <round_num, index>. The 17-
bit index points to an entry in the queue. The 15-bit round_num
counts the number of rounds the pointer traversed the entire
queue. This round number helps to resolve special cases when the
queue is full or empty.

To detect whether the queue is full or empty we subtract the
retrieve_ptr from the add_ptr. If the difference is zero, the queue
is empty. If the difference is equal to or larger than the queue size,
the queue is full. In some cases, the difference is negative,
meaning the retrieve_ptr is larger than the add_ptr, in which case
the pointers need an adjustment. We discuss this below.

In the standard circular queue implementation, to enqueue a new
task, one typically checks whether the queue is full by computing
the difference between the pointers. If the queue is not full, the
new task is added to the queue and add_ptr is incremented.
Unfortunately, this design cannot be implemented on current
switches because it accesses add_ptr twice; it checks the pointer,
then possibly increments it. The dequeue operation faces a similar
challenge.

Because it can access a pointer only once per packet, Falcon uses
an atomic read_and_increment(add_ptr) to read add_ptr and
increment it in one access. It then checks whether the queue is
full. If the queue is not full, Falcon uses the add_ptr value to add
a task to the queue. This approach increments add_ptr even when
the queue is full. Similarly, to dequeue a task, Falcon calls
read_and_increment(retrieve_ptr) and increments retrieve_ptr
even when the queue is empty. In these cases, the pointers must be
corrected, but because the pointer can only be accessed once per
packet, the correction must be made in a future packet. We discuss
how to detect and correct incorrect pointers later in this section.

4.3 Handling Job Submission
The client submits a job by populating the header of a
job_submission packet (Figure 5) and sending the packet to the
switch. The switch then enqueues the job’s tasks.

Two switch limitations complicate adding a set of tasks to the
queue: modern switches do not permit loops or recursion, and the
scheduler can access a register (the queue) only once per packet.
To work around these limitations, Falcon checks the #TASKS field
in the packet. If it is larger than zero, it removes the first task from
the packet’s list of tasks, calls read_and_increment(add_ptr), then
adds the task to the queue.

Adding Multiple Tasks. The job_submission packet (Figure 5)
contains a list of tasks. To add multiple tasks to the queue, Falcon
leverages packet recirculation, i.e., the ability to resubmit a packet
from the egress pipeline to the ingress pipeline and process it
again like a new packet. The scheduler removes the first task from
the task list (TASK INFO1 in Figure 5) in the job_submission
packet, decrements the #TASKS field, and recirculates the packet.
Falcon continues to recirculate the packet until #TASKS is zero.

Handling a Full Queue. When enqueueing a new task, the
scheduler calls read_and_increment(add_ptr), then compares

Figure 5. Falcon’s job_submission header

add_ptr and retrieve_ptr to determine whether the queue is full. If
the queue is not full, the scheduler adds the task to the queue. If
the queue is full, the scheduler does not add the task and sends an
error packet to the client. The error packet contains the list of
tasks that are not added to the queue. The client then retries
submitting a new job after a while.

4.4 Handling Task Retrieval
To avoid head-of-line blocking, executors retrieve tasks only
when they become free. To retrieve a task, an executor sends a
request to the switch. The scheduler calls
read_and_increment(retrieve_ptr) and reads one task from the
queue. If the task’s is_valid flag is true, the task is sent to the
executor, and the is_valid flag is set to false (this is done in one
access with read_and_set(is_valid, false)). Otherwise, if the
is_valid flag is false, this indicates that the queue is empty. In this
case, the retrieve request is ignored, and the executor repeats the
request after a while.

4.5 Pointer Correction
When the scheduler receives a job submission packet, it executes
read_and_increment(add_ptr) first, then checks whether the
queue is full. If the queue is full, incrementing the add_ptr was a
mistake. To correct this mistake, the scheduler recirculates a
repair packet to reset the add_ptr to its original value. To avoid a
case in which multiple job_submission packets try to reset the
add_ptr, we added a Boolean flag (is_repairing_add_ptr) to
ensure the scheduler only recirculates one repair packet.

Similarly, task retrieval operations call
read_and_increment(retrieve_ptr), then check whether the
retrieved task is valid. If the retrieved task is invalid (which
indicates that the queue is empty), incrementing the pointer was a
mistake. We leave this pointer until the next job_submission
packet is received. When the next job_submission request is
received, the scheduler adds the first task in the queue. The
scheduler then checks if the retrieve_ptr needs adjusting, i.e., if
the retrieve_ptr is larger than add_ptr. If the retrieve_ptr needs
adjusting, the scheduler recirculates a packet and sets the
retrieve_ptr to equal the index of the newly added task. A
Boolean flag (is_repairing_retrieve_ptr) is set to ensure the
scheduler only recirculates one repair packet.

4.6 Fault Tolerance
The switch maintains a soft state. On switch failure a new switch
is selected to run the scheduling pipeline. The clients will timeout
on all previous submitted tasks and will resubmit those tasks. As
with the current frameworks [6, 10] if a tasks fails due to executor
or communication failure, the client resubmits the task.

Similarly, if a job submission packet or a task completion packet
are lost, the sender will resubmit the packet. This may lead to
double execution of a task. As our tasks are idempotent this does
not affect correctness but may lead to a loss of efficiency.

5. Evaluation
We compare the performance of Falcon against that of state of the
art centralized and distributed schedulers.

Testbed. We perform all experiments on a 12-node cluster. Each
node has 48GB of RAM, an Intel Xeon Silver 10-core CPU, and a
100 Gbps Mellanox NIC. The nodes are connected by an
Edgecore Wedge switch with a Barefoot Tofino ASIC. In all
experiments, we use 10 nodes as backend nodes (to host
executors) and 2 nodes as client nodes. Unless otherwise
specified, each backend node runs 6 executors (i.e., a total of 60
executors). For Sparrow, we run two schedulers on the client
nodes, a configuration that is favorable to Sparrow because it
reduces communication latency between the client and the
collocated scheduler.

Workload. We use a synthetic workload similar to the one used
to evaluate Sparrow [10]. Each client submits a job every 10 ms,
and each job contains a set of 10-ms tasks. We vary the number of
tasks per job to change the system utilization.

Alternatives. We compare Falcon with Sparrow, the state-of-the-
art distributed scheduler. Our evaluation of Sparrow reveals that
its implementation is not efficient due to using Java and RPCs.
We reimplemented Sparrow in C++ using raw sockets. Our C++
implementation achieves up to 25 times higher throughput and 2
times lower latency than the original Java implementation. For the
rest of our evaluation we use our C++ implementation of Sparrow.

We also evaluated Spark’s scheduling delay. Unfortunately, Spark
did not scale well beyond 50% utilization: this confirms a similar
observation made in the Sparrow paper [10]. The scheduling delay
at 50% was 3 seconds. Above 50% utilization, the scheduler could
not keep up and experienced infinite queueing. We did not include
Spark in our figures for clarity.

Finally, we experimented with Firmament. Unfortunately, the
Firmament open source implementation could not run our
workloads with millisecond tasks. We are currently debugging
this deployment. Nevertheless, Firmament authors report that it
cannot scale for more than 100 nodes with 5 ms tasks which

Figure 6. Scheduling
Throughput. The y-axis is
plotted in millions of tasks per
second.

Figure 7. Job Latency for
various utilization rates. The
error bars depict the 5th and
95th percentiles.

0

5

10

15

20

25

0 3 0 0 6 0 0 9 0 0

Th
ro
u
gh

p
u
t
(M

 t
as
k/
s)

Number of Executors

10

11

12

13

14

0.4 0.5 0.6 0.7 0.8 0.9 1.0

La
te
n
cy
 (
m
s)

Cluster Utilization Fraction

roughly equates to a peak throughput of under 400k scheduling
decisions per second.

5.1 Scheduling Throughput
Figure 6 shows the throughput of Falcon and two configurations
of Sparrow C++, with 1 sparrow scheduler and with 4 sparrow
schedulers. The throughput of a single sparrow scheduler
represents the performance of a highly optimized software-based
centralized scheduler. To increase the load on the scheduler we
ran no-op tasks and increased the number of executors (shown on
x-axis in Figure 6). An executor continuously receives task
information, drops it, and then requests a new task. Figure 6
shows that Sparrow, even with 4 schedulers, is not able to support
more than 500 executors, with its throughput peaking at 1.9
million scheduling decisions per second. On the other hand, our
cluster is too small to stress Falcon enough. With 800 executors,
Falcon achieves over 23 million scheduling operations per second
(equivalent to over 40 Sparrow schedulers). The switch data sheet
indicates that the switch can handle over 5 billion packets per
second, indicating that Falcon’s performance limit is significantly
higher than the workload our no-op executors can generate.

5.2 Job Scheduling Delays
Figure 7 shows the job scheduling delays for various system
utilization levels. Falcon significantly reduces the scheduling
delay at all utilization levels. At the 95% utilization rate, Falcon
reduces the median scheduling delay by 18.5 times (0.09 ms
compared to 1.76 ms for Sparrow) and the 95th percentile by 11.8
times (0.25 ms compared to 3.22 ms for Sparrow). Even at 50%
utilization, Falcon reduces the scheduling delay by up to 6.8
times. Furthermore, unlike Sparrow, Falcon’s median delays did
not change as the utilization reaches 95% because Falcon can
easily handle billions of packet and process requests at line-rate,
whereas the scheduling overhead increases in Sparrow with larger
jobs and higher utilization.

5.4 Scheduling Overhead Breakdown
To understand the performance differences between Falcon and
Sparrow, we measure the time spent on each step of both
protocols. Figure 8 shows the CDF of every step of Falcon and
Sparrow scheduling protocols, respectively, when running the
system at 80% utilization. The figure shows the high impact of
network acceleration. Falcon completes all scheduling steps in
under 100 s, whereas Sparrow took up to 3.11 ms. Although the
reservation delay is unique to Sparrow, task retrieval and
queueing delays are unavoidable regardless of the scheduling
approach. Comparing the delay of these two steps shows that
network acceleration brings up to 26 times higher performance
improvement. This significant performance improvement
eliminates the need for multiple schedulers and shows that a
single central scheduler can scale to support large clusters.

6. Related Work
Hybrid Schedulers. A few systems such as Hawk [11] and
Mercury [19] use a hybrid scheduling approach. These consist of a
centralized scheduler to handle long-running batch jobs and a

distributed scheduler to support low-latency scheduling.
Unfortunately, this approach still results in low-quality scheduling
decisions.

Network-Accelerated Systems. Recent projects have utilized
programmable switches to accelerate consensus protocols [17, 20,
21, 22], implement in-network caching [23], DNN training and
inferencing [24], and in-network aggregation operations [25].
R2P2 [26] is the closest of these efforts to our design. R2P2 build
a load balancer for RPC calls. R2P2 does not maintain a task
queue but rather aims to immediately submit an incoming RPC to
a server. If no server is available, R2P2 recirculates the packet
until a server becomes available. This approach is not efficient
with data analytics workloads that experiences burstiness in task
arrivals. Furthermore, R2P2 does not guarantee FIFO ordering or
scheduling decision optimality. Falcon presents a P4-compatible
queue design that overcomes these inefficiencies.

7. Concluding Remarks and Future Work
We presented Falcon, a centralized in-network scheduler that can
assign tasks to the next available executor at line-rate and scale to
process billions of requests per second. Our evaluation shows that
Falcon can reduce scheduling overhead by an order of magnitude
and achieve higher throughputs compared to current state-of-the-
art low-latency schedulers.

In our ongoing work, we are extending the scheduler to support
three common scheduling policies: data locality-aware scheduling,
priorities, and scheduling on nodes with specific resources.
Furthermore, we are building a simulator to evaluate Falcon at
large scale.

Acknowledgement

We thank the anonymous reviewers and Khuzaima Daudjee for
their insightful feedback. This research was supported by an
NSERC Collaborative Research and Development grant and
Waterloo-Huawei Joint Innovation lab grant.

8. References
[1] Stonebraker, M., Çetintemel, U. and Zdonik, S. The 8 requirements of

real-time stream processing. ACM Sigmod Record, 34, 4 (2005), 42-
47.

(a) (b)
Figure 8. Breakdown of the scheduling delays of Falcon (a) and
Sparrow (b). Note the difference in scale of the x-axis between (a)
and (b).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.025 0.05 0.075 0.1

C
D
F

Latency (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

Latency (ms)

[2] Wang, S., Liagouris, J., Nishihara, R., Moritz, P., Misra, U.,
Tumanov, A. and Stoica, I. Lineage stash: fault tolerance off the
critical path, 2019.

[3] Ousterhout, K., Panda, A., Rosen, J., Venkataraman, S., Xin, R.,
Ratnasamy, S., Shenker, S. and Stoica, I. The case for tiny tasks in
compute clusters, 2013.

[4] Zhang, T., Chowdhery, A., Bahl, P., Jamieson, K. and Banerjee, S.
The design and implementation of a wireless video surveillance
system, 2015.

[5] Venkataraman, S., Panda, A., Ousterhout, K., Armbrust, M., Ghodsi,
A., Franklin, M. J., Recht, B. and Stoica, I. Drizzle: Fast and
adaptable stream processing at scale, 2017.

[6] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. and Stoica,
I. Spark: Cluster computing with working sets. HotCloud, 10, 10-10
(2010), 95.

[7] Dean, J. and Ghemawat, S. MapReduce: Simplified data processing
on large clusters, 2004.

[8] Ren, X., Ananthanarayanan, G., Wierman, A. and Yu, M. Hopper:
Decentralized speculation-aware cluster scheduling at scale, 2015.

[9] Gog, I., Schwarzkopf, M., Gleave, A., Watson, R. N. M. and Hand, S.
Firmament: Fast, Centralized Cluster Scheduling at Scale. In
Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016)

[10] Ousterhout, K., Wendell, P., Zaharia, M. and Stoica, I. Sparrow:
distributed, low latency scheduling, 2013.

[11] Delgado, P., Dinu, F., Kermarrec, A.-M. and Zwaenepoel, W. Hawk:
Hybrid datacenter scheduling, 2015.

[12] Boutin, E., Ekanayake, J., Lin, W., Shi, B., Zhou, J., Qian, Z., Wu,
M. and Zhou, L. Apollo: Scalable and coordinated scheduling for
cloud-scale computing, 2014.

[13] Tofino-2 Second-generation of World’s fastest P4-programmable
Ethernet switch ASICs.

[14] Garefalakis, P., Karanasos, K. and Pietzuch, P. Neptune: Scheduling
Suspendable Tasks for Unified Stream/Batch Applications. In
Proceedings of the SoCC '19: Proceedings of the ACM Symposium
on Cloud Computing, 2019)

[15] Al-Kiswany, S., Yang, S., Arpaci-Dusseau, A. C. and Arpaci-
Dusseau, R. H. NICE: Network-integrated cluster-efficient storage,
2017.

[16] Li, X., Sethi, R., Kaminsky, M., Andersen, D. G. and Freedman, M. J.
Be fast, cheap and in control with SwitchKV, 2016.

[17] Li, J., Michael, E., Sharma, N. K., Szekeres, A. and Ports, D. R. Just
say NO to paxos overhead: Replacing consensus with network
ordering, 2016.

[18] Ports, D. R. K., Li, J., Liu, V., Sharma, N. K. and Krishnamurthy, A.
Designing Distributed Systems Using Approximate Synchrony in
Data Center Networks. In Proceedings of the 12th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 15), 2015)

[19] Karanasos, K., Rao, S., Curino, C., Douglas, C., Chaliparambil, K.,
Fumarola, G. M., Heddaya, S., Ramakrishnan, R. and Sakalanaga, S.
Mercury: Hybrid centralized and distributed scheduling in large
shared clusters, 2015.

[20] Takruri, H., Kettaneh, I., Alquraan, A. and Al-Kiswany, S. FLAIR:
Accelerating Reads with Consistency-Aware Network Routing,
2020.

[21] Jin, X., Li, X., Zhang, H., Foster, N., Lee, J., Soulé, R., Kim, C. and
Stoica, I. Netchain: Scale-free sub-rtt coordination, 2018.

[22] Dang, H. T., Sciascia, D., Canini, M., Pedone, F. and Soulé, R.
Netpaxos: Consensus at network speed, 2015.

[23] Jin, X., Li, X., Zhang, H., Soulé, R., Lee, J., Foster, N., Kim, C. and
Stoica, I. Netcache: Balancing key-value stores with fast in-network
caching, 2017.

[24] Ports, D. R. and Nelson, J. When Should The Network Be The
Computer?, 2019.

[25] Sapio, A., Abdelaziz, I., Aldilaijan, A., Canini, M. and Kalnis, P. In-
network computation is a dumb idea whose time has come, 2017.

[26] Kogias, M., Prekas, G., Ghosn, A., Fietz, J. and Bugnion, E. R2P2:
Making RPCs first-class datacenter citizens. In Proceedings of the
2019 USENIX Annual Technical Conference (ATC 19), 2019)

