
DedupBench: A Benchmarking Tool for Data
Chunking Techniques

Alan Liu∗, Abdelrahman Baba∗, Sreeharsha Udayashankar∗, Samer Al-Kiswany∗#
∗University of Waterloo, Canada

#Acronis Research, Canada
{i7liu, ababa, s2udayas, alkiswany}@uwaterloo.ca

Abstract—Data deduplication is a technique for reducing
storage space by identifying and eliminating redundant data.
The division of files into chunks is one of the key steps in
the deduplication process and directly impacts deduplication
effectiveness. Despite the numerous algorithms available for
chunking, there is a limited understanding of their strengths
and weaknesses in virtual machine backup environments.

We present DedupBench, a framework designed to assess the
performance of different chunking algorithms for deduplication
on user-specified data. DedupBench allows for the evaluation of
chunking techniques by comparing their deduplication ratio and
chunking throughput. DedupBench incorporates a generic design,
allowing for the effortless integration of additional chunking
techniques developed in the future.

We evaluate four widely used chunking algorithms using a
VM-based dataset with DedupBench. Our evaluation contrasts
earlier studies and demonstrates that Asymmetric Extremum
(AE) has the best deduplication efficiency for VM-based datasets
among the tested algorithms, highlighting the need to evaluate
chunking techniques on user-specified data before designing
deduplication systems.

Index Terms—deduplication, chunking

I. INTRODUCTION

Data generation rates have grown explosively over the last
decade [17]. Cloud storage providers have evolved numerous
mechanisms to support this data growth, including large-scale
distributed file systems [9, 15], novel storage architectures [11,
16] and data compression techniques [25].

Data deduplication is one such mechanism that has received
industry-wide recognition. Previous studies have shown that
a substantial amount of the data stored by providers such
as Microsoft [14] and Dell EMC [27] is redundant. Data
deduplication is a technique that identifies these redundant
copies, eliminating the need to store or re-transmit them.
Deduplication is especially effective in virtual machine (VM)
backup workloads [27]. As VMs tend to change very little
between consecutive backups, using deduplication techniques
with these workloads can result in significant storage-cost
savings of up to 80% [19].

Deduplication can be performed either at file or block-
level granularities. While a file-level deduplication technique
operates on complete files, block-level techniques typically
divide them into multiple chunks using a chunking algorithm
[19]. Block-level deduplication is preferred over file-level
deduplication as it results in higher deduplication ratios and
savings. After dividing files into chunks, the deduplication

system hashes each chunk using a collision-resistant hashing
algorithm such as SHA-256 [8]. The resulting hash, or finger-
print, is compared against a database of previously observed
fingerprints, called a fingerprint index to detect whether the
chunk is a duplicate. If a duplicate chunk is detected, it can
be safely discarded without storing it.

Chunking algorithms can be of two kinds: fixed-size or
content-defined [20]. Fixed-size chunking algorithms divide
files into chunks of a pre-specified size while content-defined
chunking algorithms examine the data within files to determine
how they must be divided. The choice of chunking algorithm
drastically affects the efficiency of a deduplication system.
Although numerous chunking algorithms have been proposed
in current literature [20, 28, 33, 34, 35], there is limited
understanding of their comparative effectiveness on VM-based
data.

In this paper, we present DedupBench, a framework de-
signed to enable the comparison of chunking algorithms
used in modern deduplication systems on user-specified data.
DedupBench allows users to empirically evaluate these al-
gorithms and select the best-performing technique for their
requirements.

In our evaluation, we consider four chunking techniques
that represent current categoires of chunking algorithms. We
include fixed-size chunking, Asymmetric Extremum (AE) rep-
resenting byte-value chunking, and Rabin and Gear represent-
ing hash-based chunking. We note DedupBench is extensible
allowing the implementation of other chunking techniques.

The results show that the deduplication efficiency is highest
and lowest when using Asymmetric Extremum (AE) [35] and
Gear-based chunking [32] respectively for VM-based datasets.
This contrasts earlier studies [32, 35] which showed that both
algorithms performed similarly across a variety of datasets.
We posit that the difference in our findings is primarily due
to differing characteristics within VM-based datasets.

This difference, as well as other differing metrics such as
chunk size variance, highlight the need to evaluate algorithms
on user-specified data before making design decisions for
deduplication systems.

II. BACKGROUND

A. Data deduplication

Data deduplication is a widely used approach in backup sys-
tems that aims to reduce storage usage and network bandwidth



Fig. 1: Boundary-shift problem

by identifying and eliminating redundant data [19, 20]. Data
deduplication consists of four fundamental steps [31]:

• File Chunking: Files to be deduplicated are divided
into smaller units, called chunks by using a chunking
algorithm.

• Chunk Hashing: Each chunk is hashed using a
collision-resistant hashing function such as SHA-256 [8]
to obtain a fingerprint.

• Fingerprint Indexing: Fingerprints are compared
against a database of previously observed fingerprints,
called a fingerprint index to check if the chunks are
duplicates.

• Chunk Storage: Non-duplicate chunks are stored and
their fingerprints are added to the fingerprint index.

B. File Chunking
File Chunking is the first and most important step in a
deduplication system [19]. In this step, files are divided into
fixed or variable sized chunks based on the used chunking
algorithm. Fixed-Size Chunking (FSC) and Content-Defined
Chunking (CDC) are the main chunking methods used [18,
28] to achieve this.

1) Fixed-Sized Chunking (FSC): FSC divides files into pre-
defined fixed size chunks and requires minimal computational
calculations, as opposed to CDC. However, it fails to achieve
high deduplication ratio due to the boundary-shift problem
[20], where any change in the data (because of insertions or
deletions) causes all subsequent chunks to change.

Figure 1 illustrates the boundary shift problem when using
FSC. It shows after inserting a single byte (A) at the beginning
of the data, all the subsequent chunks are altered. As a result,
the deduplication system perceives these chunks as new, even
though most of them differ only by a single byte from their
previous versions.

2) Content-Defined Chunking (CDC): CDC algorithms are
more resistant to boundary-shift problem [26], since chunks
boundaries are defined using data characteristics rather than
fixed size blocks, but more computational power is usually
needed to calculate boundaries of data chunks. Additionally,
research has shown that in CDC-based deduplication systems,
CPU is the primary bottleneck rather than I/O, and that the
file chunking stage alone is responsible for more than 60% of
CPU time [34].

Most CDC algorithms use a sliding window approach to
traverse the data stream. The chunk boundaries are then
identified by calculating the rolling hash value of the bytes in
the window. Rabin’s rolling hash fingerprint [23] is one of the
earliest and most commonly used hash function in deduplica-
tion systems [20]. Although the deduplication ratio obtained by

Fig. 2: Rabin-based chunking

Rabin is usually high, it requires high computational power to
calculate [7]. Gear Hash (used in FastCDC [33]) is considered
one of the fastest rolling hash algorithms at present. [33]. Other
algorithms including MAXP [10], AE [35] and RAM [30] try
to save computation power by avoiding hash calculations. Data
attributes (such as byte values) are used to determine chunk
boundaries instead.

Rabin’s Fingerprint. Rabin’s fingerprinting (Figure 2) de-
termines boundaries by passing a fixed-size sliding window
over the data stream. Rabin’s hash [23] is calculated for all
the bytes in the window. A chunk boundary is inserted at the
end of the window when the lowest K bits of the hash value
match a predefined value. Otherwise, the window slides by one
byte until this condition is satisfied. When sliding the window,
the new hash can be recomputed from the previous hash using
the following equation where α is the window size and P is
a random irreducible polynomial:

Rabin(B2, B3, ..., Bα+1) =
{[Rabin(B1, ..., Bα)−B1P

α−1]p+Bα+1} mod S
(1)

The expected average chunk size is proportional to K and is
equal to 2K . Rabin’s fingerprinting has a high computational
overhead and struggles to find boundaries in low entropy
strings, which can lead to high variance in chunk sizes as
shown in our evaluation (§IV-D) . Maximum and minimum
thresholds can be applied to chunk size to overcome this
problem [20].

Gear-based Chunking. Gear-based Chunking algorithms
use gear hash to calculate the fingerprint, which was designed
to be computationally inexpensive compared to Rabin’s hash-
ing. Due to its lower computational overhead, gear hashing has
been used by many chunking algorithms including FastCDC
[33], SuperCDC [28] and RapidCDC [21].

Gear uses an array of 256 random large integers to map
bytes to hash values. This reduces the number of operations
required to recompute the hash upon sliding the window. Table
I shows the operations required to slide the window by a single
byte with both algorithms. The following equation is used to
recompute the hash where G is the array of large integers:

Gear(B2, B3, ..., Bα+1)
= (Gear(B1, ..., Bα) << 1) +G[Bα+1]

(2)

A drawback in Gear is its limited window size compared
to Rabin-based hashing, The window size in Gear is limited
to the number of bits used by the mask value. The mask
plays an important role in determining the boundaries. It



Algorithm ADD LOOKUP OR SHIFT XOR
Rabin 0 2 1 2 2
Gear 1 1 0 1 0

TABLE I: Sliding window computational cost comparison

Fig. 3: Asymmetric Extremum (AE) chunking

is a specific sequence of bits that is used to perform a
bitwise AND operation with the fingerprint. When the result
of this operation is equal to a predetermined constant, a chunk
boundary is identified [33]. For instance, to achieve an average
chunk size of 8KB the mask value would be 213, resulting in a
13 byte window size for Gear-based chunking, much smaller
compared to the 48 byte window in Rabin-based chunking.
This smaller window size decreases the deduplication ratio,
as it causes more collisions.

3) Asymmetric Extremum: Asymmetric Extremum (AE)
[35] is one of a family of non rolling-hash based chunking
algorithms such as MAXP [10] and RAM [30]. Figure 3
depicts the chunk boundary identification process within AE.
AE searches for extremums in the data stream to identify
chunk boundaries. It uses both variable and fixed size windows
and the byte located between them is known as the target byte.

AE inserts chunk boundaries at the end of the fixed size
window when the target byte is an extremum i.e. the value of
this byte must be larger / smaller than the values of all bytes in
the fixed sized window. Otherwise, the variable sized window
expands by one byte until this condition is satisfied.

III. TOOL DESIGN AND IMPLEMENTATION

To effectively evaluate the techniques described in §II-B, we
have designed and implemented DedupBench. DedupBench is
a deduplication framework which focuses on empirically eval-
uating chunking algorithms using quantifiable performance
metrics.

A. Architecture

DedupBench is designed to facilitate measuring the perfor-
mance of different chunking techniques on large amounts
of data. DedupBench is designed into two separate tools: a
chunking tool and an analysis tool. The chunking tool takes a
set of files, chunks the data, and computes a chunk fingerprint.
It then writes each chunk’s size and hash to an intermediary
file. To speed up operations, the chunking tool can be run
in parallel on each storage node in a cluster. The analysis
tool takes all the intermediary files produced by the chunking
tool and analyzes them to determine chunk information and
deduplication ratios.

After reading the configuration details, DedupBench per-
forms the following steps for each chunking algorithm:

1) Read the contents of each file into memory buffers.
2) Chunk the contents of the buffers and calculate the

chunk hash.
Once the chunking tool has been run on every node, the

analysis tool calculates performance metrics including Dedu-
plication Elimination Ratio (DER) and Chunk Size Variance
and reports them.

B. Extensibility

DedupBench is designed to be easily extensible. To
this end, abstract interfaces for hashing and chunking
(Hashing_Technique and Chunking_Technique) are
provided to allow for the easy integration of chunking and
hashing techniques developed in the future. Figure 4 shows
the UML diagram for DedupBench.

1) Chunking Technique: This abstract interface models a
chunking algorithm and exposes the following functions for
implementation by child classes:

• chunk_stream(): Chunk the data provided by a
stream buffer.

• chunk_file(): Chunk the file located at the specified
file path.

These functions should return a list of File_Chunks, a
structure which models a chunk of data up for deduplication.
This structure contains the data for the chunk with some
additional metadata such as the chunk_size in bytes and
the chunk_hash value.

2) Hashing Technique: This abstract interface models a
hashing algorithm and exposes the following function for
implementation by child classes:

• hash_chunk(): Accepts a File_Chunk as input and
modifies its chunk_hash to hold the value obtained by
hashing the chunk.

This interface can be inherited to implement an SHA-1
class as shown in Figure 4. This interface has been used to

Fig. 4: DedupBench Architectural Diagram



implement SHA-1 [13], SHA-256 [8] and MD5 hashing [24]
within DedupBench.

3) Configuration: Each chunking technique can have its
own set of parameters specified within a configuration file. The
Config class is responsible for creating key-value mappings
from this file for retrieval and use by the chunking techniques.

C. Implementation
We have implemented DedupBench in C++ 17 in ∼ 3200
lines of code. DedupBench currently supports three hashing
algorithms: SHA-1 [13], SHA-256 [8] and MD5 [24] using
the OpenSSL [22] library. DedupBench supports the four
chunking algorithms outlined in §II-B. DedupBench reports
the performance metrics discussed in detail in §IV.

The code for DedupBench has been made publicly available
on GitHub [3] under the UWASL/dedup-bench repository
[29].

IV. EVALUATION

In this section, we evaluate the four chunking techniques
discussed using a virtual-machine (VM) based dataset.

Testbed. Our evaluation has been carried out on a plat-
form within CloudLab [12]. The machine had an Intel Xeon
CPU with 8 hyperthreaded cores, 12M Last-Level-Cache and
64GB of main memory. We measure the performance of each
chunking algorithm independent of the underlying file system.
To facilitate this, DedupBench reads the data into in-memory
buffers before the chunking process is started.

Dataset. We use a collection of fifteen virtual machine
images built for various applications from the VMware Mar-
ketplace [6] to create a VM-based dataset with a total size
of 10.66 GB. The images are packaged by Bitnami [2]
and are Debian-based. Each image is pre-packaged with a
target application such as Jenkins [4], Apache Kafka [1], and
MySQL [5]. The complete list of VM images can be found
on the project’s GitHub repository [29].

Chunking algorithms. We compare the following chunking
algorithms described in §II-B:

• Fixed: Fixed-size chunking algorithm
• Rabin: Content-defined chunking algorithm using Rabin’s

hashing [20] to identify chunk boundaries.
• Gear: Content-defined chunking algorithm using Gear

hashing [32] to identify chunk boundaries.
• AE-Max: Asymmetric Extremum [35] operating in max-

imum mode i.e. the target byte is a local maximum.
• AE-Min: Asymmetric Extremum [35] operating in mini-

mum mode i.e. the target byte is a local maximum.
Metrics. We use the following metrics for our evaluation.
• Chunking Throughput: The average rate at which data

chunking occurs for the specified chunking algorithm.
• Deduplication Elimination Ratio (DER): This metric rep-

resents the data savings obtained by a system using the
specified chunking algorithm. A value of 1 indicates no
deduplication at all while higher values indicate better
deduplication efficiency. It is calculated as :

Original data size

Deduplicated data size
(3)

Fig. 5: Chunking Throughput Comparison

Fig. 6: Deduplication Elimination Ratio (DER) Comparison

• Average Chunk Size: The average size of all chunks
obtained by running the specified chunking algorithm.
With content-defined chunking algorithms, the average
observed chunk size can differ from the expected chunk
size.

• Chunk Size Variance: The variance in chunk sizes ob-
tained by running the specified chunking algorithm.

A. Chunking Throughput

Figure 5 compares the average chunking throughput among all
algorithms. Fixed-size chunking attains a significantly higher
throughput compared to all other algorithms as it does not
involve scanning the contents of the data. The throughput of
fixed-size chunking increases with larger chunk sizes, as the
total number of chunks is reduced.

By contrast, Rabin-based chunking exhibits the lowest
throughput at around 30MB/s regardless of chunk size. This
is because Rabin hashing using a sliding window is the
most computationally expensive of all the evaluated chunking
algorithms. The throughput of Gear-based chunking spans a
range of 125-150 MB/s. Gear hashing’s lower computational
cost is one of the major reasons for this improvement over
Rabin-based hashing.

Both AE-Max and AE-Min and possess chunking through-
puts similar to that of Gear-based hashing. Their throughput
slightly increases with chunk size as well.
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Fig. 7: Observed Average Chunk Size for 4K, 8K and 16K expected average chunk sizes

(a) 4 KB (b) 8 KB (c) 16 KB

Fig. 8: Chunk Size Variance for 4K, 8K and 16K expected average chunk sizes

B. Deduplication Efficiency

We use the Deduplication Elimination Ratio (DER) to evalu-
ate the deduplication efficiency of each chunking algorithm.
Figure 6 illustrates the DER for each algorithm with varying
expected chunk sizes. DER decreases with increasing expected
chunk size for all chunking algorithms. This is because the
common chunks across the dataset reduce with increasing
chunk size.

AE-Min achieves the highest DER of all the chunking
algorithms, slightly higher than AE-Max. Rabin-based hashing
performs better than gear-based hashing in terms of DER.
While previous studies [35] have shown that AE and Rabin-
based hashing have similar deduplication ratios, our results
show that AE is significantly better than Rabin-based hashing
for virtual-machine based data.

Gear-based hashing has the lowest deduplication ratio
among all algorithms for our virtual-machine dataset. This
contrasts earlier studies [33] which showed that Gear-based
hashing has similar DERs as Rabin-based hashing.

Our evaluation shows that the deduplication efficiency
is highly dependent on the underlying chunking algorithm.
Chunking algorithms can also significantly differ in perfor-
mance with changing data characteristics. Thus, DedupBench
highlights the value of evaluating chunking algorithms on user-
specified data to allow for informed decisions when designing
deduplication systems.

C. Average Chunk Size

Figure 7 shows the actual average chunk sizes for expected
average chunk sizes of 4KB, 8KB and 16KB. Fixed-size
chunking always results in the actual average chunk size
matching the expected average, as all chunks are equal to the
pre-specified size.

However, the actual average chunk sizes for content-defined
chunking algorithms differ from their expected values. For
instance, when using Gear-based chunking with an expected
average chunk size of 16KB (Figure 7c), the actual average
chunk size is 25% higher, at 20 KB instead. A key point to
note from Figure 7 is that AE-Min and AE-Max always result
in a lower actual average size than expected. On the other
hand, rolling hash based chunking algorithms such as Rabin-
based and Gear-based chunking always result in a higher actual
average size than expected.

D. Chunk Size Variance

Figure 8 shows the CDF of observed chunk sizes for expected
average chunk sizes of 4KB, 8KB and 16KB. Fixed-size
chunking has the least variance as all the chunk sizes are
equal to the expected chunk size, with the exception of the
last chunk whose size depends on the file size.

Among the content-defined chunking algorithms, AE-Min
and AE-Max have the lowest variance. Rabin-based and Gear-
based chunking however exhibit large variances in chunk
size. For instance, in Figure 8a the maximum and minimum
chunk sizes for Rabin-based chunking are 16KB and 1KB



respectively, while the expected average chunk size is 4KB.
Gear-based chunking exhibits similar variance as well.

This variance in the chunk size partially explains why
Rabin-based and Gear-based chunking have lower DERs than
AE-Min and AE-Max, as large chunk variance tends to be
detrimental to deduplication performance.

V. CONCLUSION

We present DedupBench, a framework to enable the smooth
evaluation of popular chunking algorithms on user-specified
data. DedupBench is designed to be generic and easily
extensible to chunking algorithms developed in the future.
Our evaluation shows that key metrics such as deduplication
efficiency and chunk size variance are highly dependent on
characteristics of the data up for deduplication. This highlights
the need to evaluate these chunking algorithms on user-
specified data before making critical design decisions for
large-scale deduplication systems.
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