
Measuring The Runtime Performance Of C++
Code Written By Humans Using GitHub Copilot

Sreeharsha
Udayashankar

Meiyappan
Nagappan

Samer
Al-Kiswany

Daniel
Erhabor

Introduction

▪ Large Language Models

▪ Chatbots [1]

▪ Autonomous Agents [2]

▪ Coding Assistants [3]

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 2

[1] E. Adamopoulou et al. Chatbots: History, Technology, and Applications, Machine Learning with Applications, 2020

[2] Z. Deng et al. AI Agents Under Threat: A Survey of Key Security Challenges and Future Pathways. ACM Computing Surveys, 2025

[3] A. Dakhel et al. GitHub Copilot AI pair programmer: Asset or Liability?, Journal of Systems and Software, 2023

GitHub CoPilot
▪ Coding Assistant

▪ Powered by OpenAI Codex (GPT-3)*

▪ Visual Studio extension

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 3

* Now powered by choice of model between GPT-4o / Claude 3.5

GitHub CoPilot – Previous Studies

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 4

SecurityUsability / Functionality

Runtime Performance

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 5

▪ Page-load Latency vs Customer Bounce Rate [1]

Few
additional
seconds

90% bounce rate
increase

[1 Google. Mobile Page Speed and Industry Benchmarks, 2017.

[2] Gigaspaces, Amazon Found Every 100ms of Latency Cost them 1% in Sales, 2023.

[3] Udayashankar S et al. Draconis: Network Accelerated Scheduling for Microsecond Scale Workloads, ACM SIGOPS European Conference on Computer Systems (EuroSys), 2024

▪ Latency vs Sales revenue [2]

100
milliseconds

Millions of $

▪ Large-scale systems track 99th percentile latency in µs [3]

▪ First study focused on runtime performance

▪ Systems / Infrastructure Engineering

▪ Sample RQ: Is there a runtime performance difference in C++ code when using Copilot?

▪ Spoiler Alert!: On average, copilot-aided solutions were 15-27% slower than their unaided
counterparts.

Our Contributions

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 6

32 participants Two C++ problems

+/- Copilot

Outline

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 7

▪ Introduction

▪ Methodology

▪ Evaluation ~ RQs

▪ Takeaways

Methodology

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 8

▪ Participants asked to solve two problems

▪ One with and another without Copilot assistance

Problem A: File I/O Problem B: Multi threading

Must be quickly
solvable!

Must have multiple
solutions with only

performance
differences!

32 Participants

Methodology

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 9

▪ Participants asked to solve two problems

▪ One with and another without Copilot assistance

▪ Code Stubs
.....

void primaryFunction() {
 // YOUR CODE GOES HERE
}
.....

int main() {
 initialization();
 primaryFunction();
 sanityCheck();
 return 0;
}

32 Participants

Methodology
Introduction Task Break FinishTask

Send
Code

Survey

SurveyInterview

Recording Recording

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 10

RESEARCH QUESTIONS

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 11

RQ 0: Does Copilot influence
program correctness?

TABLE OF INVALID RUNS

Compilation FailureTest Failure

With Copilot
A: 0/16
B: 2/16

Without Copilot
A: 4/16
B: 2/16

Copilot leads developers to
produce correct code in most

cases!

Code
Analysis

Test
Cases

RESEARCH QUESTIONS

12

RQ 1: Is there a runtime performance
difference in C++ code when using Copilot?

Problem A: Mean runtime with
Copilot is 27% slower.

Problem B: Mean runtime with
Copilot is 15% slower.

• 32 runs on 8-core Intel Xeon D-1548 @ 2 GHz
• Wilcoxon Rank Sum Test

Runtime Performance

Copilot-aided solutions possess worse
runtime performance than unaided

ones!

TABLE OF RUNTIME PERFORMANCE

ACM / IEEE International Conference on Software Engineering (ICSE), 2025

RESEARCH QUESTIONS

13

TABLE OF RUNTIME PERFORMANCE

Problem A: Fastest solution without
Copilot is 8x faster than with.

Same participant had a solution
closer to median runtime when using

CoPilot for Problem B!

RQ 1: Is there a runtime performance
difference in C++ code when using Copilot?

Runtime Performance

Copilot-aided solutions possess worse
runtime performance than unaided

ones!

• 32 runs on 8-core Intel Xeon D-1548 @ 2 GHz
• Wilcoxon Rank Sum Test

ACM / IEEE International Conference on Software Engineering (ICSE), 2025

RESEARCH QUESTIONS

14

RQ 1: Is there a runtime performance
difference in C++ code when using Copilot?

Problem A:
Mean runtime
with Copilot is
27% slower.

Problem B:
Mean runtime
with Copilot is
15% slower.

Problem A: Fastest solution without
Copilot is 8x faster than with.

Copilot-aided solutions possess worse
runtime performance than unaided

ones!

Runtime Performance

Same participant had a solution
closer to median runtime when using

CoPilot for Problem B!

ACM / IEEE International Conference on Software Engineering (ICSE), 2025

RESEARCH QUESTIONS

15

RQ 2: Does Copilot sway developers towards
or away from solutions with faster runtime

performance?

Copilot tends to sway developers
towards slower solutions!

Video
Analysis

Open
Coding

Participant
Survey

P12 (B) when implementing an optimization:

“Copilot didn’t understand me well; I just gave up
and wrote it myself.”

ACM / IEEE International Conference on Software Engineering (ICSE), 2025

RESEARCH QUESTIONS

16

Bonus: How do participant demographics
affect these results?

Students Professionals

Lower runtime is better.

Copilot-aided solutions are slower
regardless of participant

demographics!

Participant
Survey

Runtime
Performance Problem A

ACM / IEEE International Conference on Software Engineering (ICSE), 2025

Summary

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 17

▪ Coding assistants powered by LLMs are popular

▪ Generated code needs to be carefully examined

▪ GitHub Copilot

▪ Produces functionally correct code in most cases

▪ Does not target better runtime performance and hinders developers trying to do so.

▪ Anonymized Participant Data / Scripts: Artifact Link

https://zenodo.org/records/14868358

PAGE 18ACM / IEEE International Conference on Software Engineering (ICSE), 2025

	Slide 1: Measuring The Runtime Performance Of C++ Code Written By Humans Using GitHub Copilot
	Slide 2: Introduction
	Slide 3: GitHub CoPilot
	Slide 4: GitHub CoPilot – Previous Studies
	Slide 5: Runtime Performance
	Slide 6: Our Contributions
	Slide 7: Outline
	Slide 8: Methodology
	Slide 9: Methodology
	Slide 10: Methodology
	Slide 11: Research Questions
	Slide 12: Research Questions
	Slide 13: Research Questions
	Slide 14: Research Questions
	Slide 15: Research Questions
	Slide 16: Research Questions
	Slide 17: Summary
	Slide 18

