Measuring The Runtime Performance Of C++
Code Written By Humans Using GitHub Copilot

Daniel Sreeharsha Meiyappan
Erhabor Udayashankar Nagappan

%)) WATERLOO

Introduction

= Large Language Models
= Chatbots [
= Autonomous Agents [2]

= Coding Assistants [3!

[1] E. Adamopoulou et al. Chatbots: History, Technology, and Applications, Machine Learning with Applications,
[2] Z. Deng et al. Al Agents Under Threat: A Survey of Key Security Challenges and Future Pathways. ACM Co
[3] A. Dakhel et al. GitHub Copilot Al pair programmer: Asset or Liability?, Journal of Systems and Software, 2023

ACM / IEEE International Conference on Software Engineering (ICSE), 2025

GitHub CoPilot

= Coding Assistant S
= Powered by OpenAl Codex (GPT-3)* accenture

= Visual Studio extension

JS testjs 1 @

Js test.js > @ calculateDaysBetweenDates
1 function calculateDaysBetweenDates(begin, end) {|
var beginDate = new Date(begin);
var endDate = new Date(end);
var days = Math.round((endDate - beginDate) / (1000 *x 60 * 60 * 24));
return days;

2

. 8 Copilot responding... @ Ask Copilot .
* Now powered by choice of model between GPT-40 / Claude 3.5 G B MEN EES TN R KO N () BR

ACM / IEEE International Conference on Software Engineering (ICSE), 2025

GitHub CoPilot - Previous Studies

Usability / Functionality Security

Lost at C: A User Study on the Security Implications

Expectation vs. Experience: Evaluating the Usability of Code of Large Language Model Code Assistants

Generation Tools Powered by Large Language Models

Gustavo Sandoval! Hammond Pearce! Teo Nys, Ramesh Karri, Siddharth Garg, Brendan Dolan-Gavitt

Priyan Vaithilingam Tianyi Zhang Elena L. Glassman i York University

pvaithilingam@g.harvard.edu tianyi@purdue.edu glassman@s rvard
Harvard University Purdue University Harvard University
USA USA USA
ABSTRACT

Recent advances in Large Language Models (LLM) have made auto-

matic code generation possible for real-world programuminig tasks iin A Large-Scale Survey on the Usability of Al Programming
general-purpose programming languages such as Python. However, Assistants: Successes and Cha"enges

there are few human studies on the usability of these tools and how

Abstract Large Language Models for Code:
Language Models (LLMs) such as OpenAl Codex are Security Hardening and Adversarial Testing
increasingly being used as Al-based coding assistants. Un-
derstanding the impact of these tools on developers’ code is
paramount, especially as recent work showed that LLMs may
gest cybersecurity vulnerabilities. We conduct a security-

Jingxuan He Martin Vechev
ETH Zurich, Switzerland ETH Zurich, Switzerland

inf.ethz.ch martin.vechev@inf.ethz.ch
they fit the programming workflow. In this work, we conducted

Chenyang Yang Brad A. Myers

a within-subjects user study with 24 participants to understand ellon University

how programmers use and perceive Copilot, a LLM-based code
generation tool. We found that, while Copilot did not necessarily
improve the task completion time or success rate, most partici-
pants preferred to use Copilot in daily programming tasks, since
Copilot often provided a useful starting point and saved the effort
of searching online. However, participants did face difficulties in
understanding, editing, and debugging code snippets generated

ABSTRACT 1 INTRODUCTION
Large language models (large LMs) are increasingly trained on After achieving great success in
massive codebases and used to ge e er, LMs lack Jrge la sdels (large LMs) ar

driven user study (N=58) to assess code written by student
programmers when assisted by LLMs. Given the potential

irce code and

severity of low-level bugs as well as their relative frequency s 1: Wh awareness of security and a

code. This work
security
generating secure code, and (i)
with LLM based aluate LMs' security at an
to automation bi both of these by formul

other developerd code generation. The taskis p
roduce critical security bugs at a rate no greater than property to guide the LM to

provided p
in real-world projects, we tasked participants with implement

ing a singly-linked ‘shopping list" structure in C. Our results
indicate that the security impact in this setting (low-level C

)
~1M developers
with pointer and array manipulations) is small: Al-assisted

pproach called SVEN

es property-specific continuous

On Programming Variability with Large Language Model-based
Assistant

001:10.1148/3610721 a e iven property
procedure opti ateofitheart

Asleep at the e S B e S

Another study in [43] found that in 16 out of 21 security-relevant

Keyboard? Assessing the o e L e

M with 2.78 ers s : ;e d vulnerabilities. The

o

Mathieu Acher S Jean-Marc Jézéquel
University of Rennes, INSA, IRISA, ersity of Sevilla University of Rennes, IRISA, Inria, IUF
Inria, IUF Sevilla, Spain Rennes, France
Rennes, France jagalindo@us.es jean-marc.jezequel@irisa.fr
mathieu.acher@irisa.fr

n overview of the topics covered in our u
study of Al programming assistants.

When we er

Security of GitHub Copilot’s g o WSl e e e) e

(or degraded to 36.8

Code Contributions “‘]' LW'doachiles cven ki scinitysconi

ever, considerable effort is still required to rule out v

ABSTRACT

Programming variability is central to the design and implementa. tures, code variations, and an exponential number of possible vari

since developers should program, maintain, and test multiple fea- By Hammond Pearce, Baleegh Ahmad, Benjamin Tan,

Brendan Dolan-Gavitt, and Ramesh Karri

wally during co

Fdologlée™s Mackiloc leanulng retrospective security analysis after cod

ware and application security.
tion of software systems that can adapt to a variety of contexts ants [4,26,32 During the last decades, numerous languages, m to building softwa

. Abstract
and requirements, providing increased flexibility and customiza paradigms, and technologies have been developed to support sys

There is burgeoning interest in designing Albased sys
tems to assist hu
including tools that au
code. The most notable of these comes in the form of the
first self-described “Al pair programmer,” GitHub Co
1 trained over open source code.
s bugs—and so, given the vast
fot has processed, it is

eering community
tion. Managing the complexity that arises from having multiple tematic transformation of problem-level abstractions to software im-
features, variations, and possible configurations is known to be plementations. From the early days of generative programming [16
are developers. In this paper, we e and software product line (SPL) engineering [4, 37, 47], the goal has
plore how large language model (LLM)-based assistants can support been to automatically generate variants from a specification written
the programming of variability. We report on new approaches made in one or more textual or
possible with LLM-based assistants, like: features and variations In this short and exploratory paper, we defend the idea that large ge model will have learned from ex- | Are Copilot's suggestions commonly insccure?
What is the prevalence of insecur
factors of the “context” yield generated code that is more
ate the prevalence and conditions that can | or less secure?
Hub Copilot to reccommend insecure code. To per
alysis, we prompt Copilot to g code
relevant to high-risk cybersecurity weaknesse
for example, those from MITRE’s “Top 25" Common Weak:
 (CWE) list. We explore Copilot's perfor
distinet code-generation axes—examining
given diversity of weaknesses, diversity of
prompts, and diversity of dos In total, we produce ¢ locu n mend:
89 different scenarios for Copilot to complete, producing
1,689 programs. Of these, we found approximately 40% to
be vulnerable,

can be implemented as prompts; augmentation of variability out of language models (LLMs) can be leveraged to support the program-
LLM-based domain knowledge; seamless implementation of vari ming of variability and realize the early ambition of generative
ability in different kinds of artefacts, programming languages, and programming and SPL engincering, As experimented and reported
frameworks, at different binding times (compile-time or run-time) in this paper, an emerging pattern is that LLMs act as a new vari-
We are sharing our data (prompts, sessions, generated code, ete) ability compiler capable of transforming a high-level specification
to support the assessment of the effectiveness and robustness of (prompt) into variable code, features, generators, configurable sys-
LLMs for variability-related tasks. tems, or SPLs written in a given technological space.
LLMs are gaining momentum and are capable of tacklir

KEYWORDS and more problems from linguistics, maths, commonsense reason-
ing, bic physics, etc. BERT [18], GPT-3 [9], PaLM [15], to name

a few, are scaling to support a variety of tasks such as text g

variability, programming, software product lines, generative
large language model

classification. arithmetic on numbers.

Runtime Performance

= Page-load Latency vs Customer Bounce Rate 1]

gg‘(/{itiona] cl I 90% bounce rate
increase

seconds

= Latency vs Sales revenue [2]

100 amazon Millions of $

milliseconds

= Large-scale systems track 99t percentile latency in ps 3]

[1 Google. Mobile Page Speed and Industry Benchmarks, 2017.

g,_ UNIVERSITY OF
[2] Gigaspaces, Amazon Found Every 100ms of Latency Cost them 1% in Sales, 2023. A W a T E R Loo
[3] Udayashankar S et al. Draconis: Network Accelerated Scheduling for Microsecond Scale Workloads, ACM SIGOPS European Conference on Computer Systems (EuroSys), 2024 @

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 5

Our Contributions

= First study focused on runtime performance

= Systems / Infrastructure Engineering

32 participants Two C++ problems tl
‘ ‘ eeoeo p—
o —
s /> +/- Copilot

= Sample RQ: Is there a runtime performance difference in C++ code when using Copilot?
= Spoiler Alert!: On average, copilot-aided solutions were 15-27% slower than their unaided
counterparts.

4 WATERLOO

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 6

Outline

= Methodology

4 WATERLOO

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 7

Methodology

32 Participants
= Participants asked to solve two problems

= One with and another without Copilot assistance

Problem A: File I/O Problem B: Multi threading

- Must have multiple
Must be quickly solutions with only
solvable! performance @
differences! I WATED! (O
2> WATERLOO

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 8

Methodology

32 Participants
= Participants asked to solve two problems

= One with and another without Copilot assistance

= Code Stubs

int main() {
initialization();
primaryFunction();
sanityCheck();
return O;

) 4 WATERLOO

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 9

Methodology

[Introduction } [Break] [Task } [Finish]

-		-
zoom | QN 5

: : gf: : Send
| ‘ | — | % | Code

@ /Y IV = —
| | | I — gf
'\ e=s5e1 /| | 1 T —
| \ A J' | | \ o~ l | Interview Survey
(&) R
| | | |
| Recording | | Recording |

WATERLOO

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 10

RESEARCH QUESTIONS

RQ 0: Does Copilot influence
program correctness?

i

Test
Cases

Code
Analysis

ACM / IEEE International Conference on Software Engineering (ICSE), 2025

g Copilot leads developers to h
produce correct code in most
L cases!)
Test Failure X Compilation Failure X
| partID | problem | mode | compiled | passed
1 [P32 X | B C TRUE FALSE
2 | P30 B NC TRUE FALSE
3 | P23 A NC TRUE NULL
4 | P15 X | A NC FALSE NULL
5 | P15 B C FALSE NULL
6 | P7 A NC FALSE NULL
7 | P6 B NC TRUE FALSE
8 | P3 A NC TRUE FALSE
TABLE OF INVALID RUNS
Without Copilot With Copilot
A: 4/16 A: 0/16
B: 2/16 B: 2/16

11

RESEARCH QUESTIONS

RQ 1: Is there a runtime performance
difference in C++ code when using Copilot?

&

Runtime Performance

ACM / IEEE International Conference on Software Engineering (ICSE), 2025

Copilot-aided solutions possess worse
runtime performance than unaided
ones!

32 runs on 8-core Intel Xeon D-1548 @ 2 GHz
Wilcoxon Rank Sum Test

Problem | Mode | Valid Runs | Mean Median Min Max

A C 16 x 32 34.86 s 3485 s 33.82 s 36.02 s
A 3447 s 4.045 s 35.84 s
B C 14 x 32 1898 ms|| 9454 ms | 612.1 ms | 7356 ms
B NC 14 x 32 1628 ms)| 9439 ms | 4949 ms | 6761 ms

TABLE OF RUNTIME PERFORMANCE

Problem A: Mean runtime with
Copilot is 27% slower.

|

|
|

Problem B: Mean runtime with
Copilot is 15% slower.

|

12

RESEARCH QUESTIONS

RQ 1: Is there a runtime performance
difference in C++ code when using Copilot?

&

Runtime Performance

ACM / IEEE International Conference on Software Engineering (ICSE), 2025

Copilot-aided solutions possess worse
runtime performance than unaided
ones!

32 runs on 8-core Intel Xeon D-1548 @ 2 GHz
Wilcoxon Rank Sum Test

Problem | Mode | Valid Runs | Mean Median f Min Max

A C 16 x 32 34.86 s 3485 s l 33.82 s 36.02 s
A NC 12 x 32 26.02 s 3447 s 4.045 s J 3584 s
B C 14 x 32 1898 ms | 9454 ms | 612.1 ms | 7356 ms
B NC 14 x 32 1628 ms | 943.9 ms | 4949 ms | 6761 ms

TABLE OF RUNTIME PERFORMANCE

Copilot is 8x faster than with.

[Problem A: Fastest solution without }

Same participant had a solution
closer to median runtime when using

CoPilot for Problem B!

13

Copilot-aided solutions possess worse
runtime performance than unaided

ones!
RESEARCH QUESTIONS
Problem A: Problem B:
. Mean runtime Mean runtime
| RQ 1: Is. there a runtime performanqe with Copilot is with Copilot is
difference in C++ code when using Copilot? 27% slower. 15% slower.

[Problem A: Fastest solution without }

Copilot is 8x faster than with.
OQ Same participant had a solution
. closer to median runtime when using
Runtime Performance CoPilot for Problem B!

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 14

Copilot tends to sway developers
towards slower solutions!

RESEARCH QUESTIONS

RQ 2: Does Copilot sway developers towards
or away from solutions with faster runtime
performance?

-

P12 (B) when implementing an optimization:

“Copilot didn’t understand me well; I just gave up
S and wrote it myself.”)

ooXxXX

EAE IQ\%%
T H <5

Video Open Participant
Analysis Coding Survey

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 15

Copilot-aided solutions are slower
regardless of participant

RESEARCH QUESTIONS demographics!

Lower runtime is better.

o« o o Runtime Comparison for Students on Problem A Runtime Comparison for Professionals on Problem A
Bonus: How do participant demographics o 3462 0 et
? 3 I ' 3 ——— :
affect these results: 200 . Fao ﬁ
220 520
210 S10
i

c NC C NC
Copilot Usage Copilot Usage

Students Professionals
Participant Runtime

Survey Performance Problem A

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 16

Summary ®

= Coding assistants powered by LLMs are popular

= Generated code needs to be carefully examined "g

= GitHub Copilot @ 8~: ;_’

= Produces functionally correct code in most cases

= Does not target better runtime performance and hinders developers trying to do so.

= Anonymized Participant Data / Scripts: Artifact Link

WATERLOO

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 17

https://zenodo.org/records/14868358

UNIVERSITY OF

WATERLOO

>

ACM / IEEE International Conference on Software Engineering (ICSE), 2025 PAGE 18

	Slide 1: Measuring The Runtime Performance Of C++ Code Written By Humans Using GitHub Copilot
	Slide 2: Introduction
	Slide 3: GitHub CoPilot
	Slide 4: GitHub CoPilot – Previous Studies
	Slide 5: Runtime Performance
	Slide 6: Our Contributions
	Slide 7: Outline
	Slide 8: Methodology
	Slide 9: Methodology
	Slide 10: Methodology
	Slide 11: Research Questions
	Slide 12: Research Questions
	Slide 13: Research Questions
	Slide 14: Research Questions
	Slide 15: Research Questions
	Slide 16: Research Questions
	Slide 17: Summary
	Slide 18

