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Abstract
An important application area of artificial intelligence lies
in the development of intelligent agents, capable of playing
games at skill levels comparable to humans. The first intel-
ligent agents to perform such feats were model-based and
designed to play fixed-rule games such as BackGammon,
Go and Chess. These agents have long been specialized and
limited to the specific game they were designed to target.
For example, a model capable of playing chess would not
fare very well if tasked with playing another game such as
Go.

Recent model-based approaches such as AlphaZero [24]
have evolved past this limitation and demonstrate impres-
sive results across a variety of games. However, these ap-
proaches were still limited as they could only handle fixed-
rule games such as Chess and Go. The newest development
in this area is MuZero [23], which could not only handle
fixed-rule games just like AlphaZero [24], but could handle
visually rich environments with seemingly no rule-sets as
well. Model-free algorithms such as Deep-Q-Learning [18]
were the only approaches thought to be able to handle such
environments till date.

The goal of this project is to evaluate MuZero on the vi-
sually rich game Super Mario Bros [15], to see if it can hold
up its impressive record when compared to state-of-the-art
model-free algorithms.

Introduction
Playing games has been a major application area for research
in both machine learning and artificial intelligence. Algo-
rithms have been devised for a variety of games including
BackGammon [28], Chess [5, 1], Go [7, 30] and Bridge.
Traditional techniques for this include Alpha-Beta Search
[20, 16], Minimax Search [22, 21] and Monte-Carlo Tree
Search [6]. However, in recent times, reinforcement learning
has been applied to play numerous games including Chess
[23, 24, 29], Go [25, 24, 23], BackGammon [28] and vari-
ous games from the Atari 2600 Gaming Library [17, 23].

Reinforcement learning can be broadly divided into 2
subcategories: model-based and model-free learning ap-
proaches. Some examples of model-based approaches in-
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clude DYNA [27], Prioritized Sweep [19] and ARTDP [2].
Model-free approaches to reinforcement learning such as
Deep-Q-Networks [17] and R2D2 [14] have also been gain-
ing steadily in popularity and usage.

Google’s DeepMind project announced AlphaZero [24], a
model-based reinforcement learning approach (Ref), in late
2017 which was able to master a variety of games such as
Chess, Go and Shogi with a single reinforcement-learning
based approach. They evaluated it by pitting against the
world-champion programs and humans in each respective
game. For example, AlphaZero played 1000 games against
Stockfish 8 [1], winning 155 of them and losing only 6 [24].
It had similar impressive results against Stockfish 9 as well.
In Go, it was pitted against Crazy Stone [7] and Zen [30] as
well as the human European Champion, Fan Hui. It scored
impressively against each of these opponents as well [24].
AlphaZero was one of the first programs to show that a sin-
gle generic approach could work in different environments
with different rules, a huge step towards general AI at the
time.

Subsequently, Google has now developed MuZero [23],
which can extend the planning approaches of AlphaZero to
accommodate new scenarios such as playing Atari Games,
which were previously restricted to model-free reinforce-
ment learning approaches. MuZero has been evaluated on
Chess, Go, Shogi and the Atari 2600 benchmark [23, 3].
MuZero outperforms or matches AlphaZero in each of the
three games AlphaZero was previously evaluated on [23]
and goes ahead to massively outperform model-free ap-
proaches such as DQN and R2D2 in the Atari Gaming
Benchmark [23].

The goal of my research project is to determine whether
MuZero can hold up the same impressive performance
record against DQN on the popular game Super Mario Bros.
Previously, agents trained to play Super Mario Bros have uti-
lized Deep-Q Networks [17] and Double Deep-Q Networks
[11] to play through individual levels and have outperformed
other model-based approaches which do so.

Project Summary

1. Research Problem: Evaluation of MuZero on Super
Mario Bros and comparison against DQN with Double-
Q-Learning



2. Main Algorithms Implemented / Modified: MuZero
and Deep-Q-Networks with Double-Q-Learning

3. Evaluation: Compare in-game scores on an overworld
training level.

This project has been carried out using the public MuZero
implementation on Github [10] as well as the super-mario-
bros environment [15] for OpenAI Gym [4]. A custom DQN
[17] implementation with Double-Q-Learning [11] has been
used as the baseline during evaluation. Both algorithms have
been trained on the same overworld level.

Evaluation Details
1. Performance Metric: The performance metric used to

evaluate these algorithms is the in-game score at the end
of the episode. This score is a function of various fac-
tors such as the time taken to complete the level (if com-
pleted), the number of special blocks hit as well as the
number of monsters killed while traversing the level.

2. Environment Features: The models have been trained
and evaluated using the OpenAI Gym [4] environment. In
order to simulate Super Mario Bros, a previously designed
plugin for this environment, the super-mario-bros package
[15] built on top of the nes-py emulator using Python 3.7,
have been used.

Main Results
The key takeaway from this paper is that MuZero [23] ap-
pears to provide performance comparable to that of model-
free algorithms on visually rich environments such as Super
Mario Bros. This falls in line with it’s previous impressive
performance record over model-free algorithms on the Atari
ALE [23, 3].

However, in terms of computational performance,
MuZero [23] is far more computationally intensive than
Double Deep-Q-Networks [11], as seen in the Results sec-
tion. However, these results might just be a function of the
MuZero implementation [10], and might improve with tar-
geted performance optimization measures. These were be-
yond the scope of this project.

Contributions
The contributions of this paper are:
• Evaluation and Comparison of MuZero [23] and Double

Deep-Q-Networks [11] on Super Mario Bros
• Modification of the MuZero [10] repository to handle

working with Super Mario Bros
• The implementation of a custom Deep-Q-Network with

Double-Q learning [11] to play Super Mario Bros
• Hyperparameter optimization for MuZero [23] and

Double-Deep-Q-Networks [18, 11] to target the Super
Mario Bros [15] environment

Related Work
Training agents to play games is a well-explored research
area. One of the earliest examples in this regard was
TDGammon [28] , an artificial neural network developed by

IBM to play BackGammon. It was trained using temporal
difference learning [28] and achieved a level of play which
was slightly below those of top human players at the time.
Future efforts to extend this approach to other board games
[13] had limited success.

When playing games such as Chess, early reinforce-
ment learning approaches such as NeuroChess [29] have
been considered inferior to search-based approaches. For
instance, NeuroChess was a neural network trained using
temporal difference learning and it only won 13% of its
games against GNUChess [9]. Deep Blue [5], which was the
first engine to beat human world champion Garry Kasparov
in 1997 used a massively parallel search-based approach
to evaluate positions and determine the optimal choice of
moves. Up until recently, many engines such as StockFish
[1] and Hydra [12] utilized similar search based approaches
with improvements such as Alpha-Beta Searching [20, 16].
Similarly, Crazy Stone [7] utilized a Monte-Carlo search
based approach to play the popular game Go.

However, search-based approaches only work in cases
where the rules of the system are known or an accurate sim-
ulator can be interacted with. Model-based reinforcement
learning algorithms attempt to first estimate the dynamics of
the environment and then use this to plan ahead. An exam-
ple of this is PILCO [8]. However, in visually rich environ-
ments like those used in Atari 2600 games [3], model-based
approaches fall behind model-free approaches such as Deep-
Q-Networks [17] and Recurrent Replay Distributed Deep-Q-
Networks [14]. These approaches estimate the optimal pol-
icy and value functions directly by interacting with the en-
vironment. On the flip side, model-free approaches tend to
perform poorly in scenarios such as Chess and Go.

In late 2017, Google’s DeepMind released AlphaGo [25],
a program which utilized Monte-Carlo tree searches as well
as deep neural networks. AlphaGo uses the following com-
ponents:

1. A fast rollout policy pπ
2. A policy network SL trained using supervised learning

based on expert human moves in a variety of Go positions
(pσ)

3. A policy network RL, initially set to SL and later im-
proved using reinforcement learning and playing multiple
games against itself (pρ)

4. A value network vθ
The policy network takes as input a representation of the

board. It then passes this through multiple convolutional
layers which use pσ and pρ as weight parameters and out-
puts a probability distribution for all possible legal moves
in the given position. The value network similarly takes the
board representation as input and estimates the probability
of winning the game from a given position. AlphaGo com-
bines these policy and value networks using Monte-Carlo
tree searches. The tree is traversed completely without back-
ing up and leaf node expansion is carried out by a combina-
tion of pσ , the value network vθ and the fast rollout policy pπ
and combined into an evaluation using the mixing parameter
λ.



AlphaGo was able to beat the state-of-the-art search-
based program Crazy Stone [7] as well as the European
Champion Fan Hui in a series of games. Google later ex-
tended this approach to AlphaZero [24], a program capable
of playing Go, Chess and Shogi using the same combined
approach. AlphaZero had a couple of differences when com-
pared to AlphaGo:

• It estimated the outcome of a given position (win / loss /
draw) vs simply calculating the probability of a win like
AlphaGo.

• The rules of Go were symmetric and this property was
used to boost the training data set by rotating and reflect-
ing positions. The rules of chess are asymmetric, for in-
stance pawns cannot move backwards. AlphaZero there-
fore does not assume symmetry.

• AlphaZero maintains a single neural network that is up-
dated continually and used for self play games vs main-
taining copies of multiple previous iterations to form a
self-play pool like AlphaGo did.

AlphaZero had significant success and could beat Al-
phaGo at Go, Stockfish 8 and 9 at Chess and Elmo at Shogi
[24]. Google further built upon the AlphaZero protocol to
develop MuZero [23]. MuZero utilizes the planning based
approach of AlphaGo and AlphaZero but does not need ac-
cess to an accurate simulator or need to know some rules
of the game. It instead models just the aspects which are
important to an agent’s decision making process. Several of
AlphaZero’s components which relied on the accurate sim-
ulator / rulebook have been replaced with a single neural
network. After evaluation on the Atari 2600 benchmark [3]
using the Atari Arcade Learning Environment (ALE) [3],
MuZero outperformed model-free algorithms such as DQN
[17] and R2D2 [14] and was the new state-of-the-art on the
Atari benchmark.

Methodology
This section outlines the approach adhered to by this paper.
The goal is to compare MuZero [23] and DQN [17] using
the game Super Mario Bros [15]. The following paragraphs
describe each algorithm in further detail.

MuZero

MuZero [23] was developed by Google’s DeepMind in late
2020. It builds on the approach taken by AlphaZero [24] and
AlphaGo [25] and extends it to visually rich environments
such as Atari 2600 games, run via the Atari Arcade Learning
Environment [3]. A key improvement over AlphaZero was
that MuZero could master environments with unknown
dynamics and did not need to know the rules beforehand,
which was previously only done using model-free learning
approaches. The architecture of MuZero is shown in Figure
1.

Figure 1: Muzero. This figure has been taken from the
MuZero [23] paper and is owned by the original authors.

MuZero is a planning based algorithm which uses Monte-
Carlo Tree Searches and deep neural networks. As shown
in Figure 1A, MuZero consists of 3 connected components:
dynamics, prediction and representation functions. Given a
hidden state sk−1 and a potential action ak, the dynamics
function generates an immediate reward rk and a new state
sk. The prediction function then calculates the policy pk and
value function vk from the new hidden state sk. The repre-
sentation function is used to generate the initial hidden state
s0 by taking the board state or Atari game state as input.

At each timestep t, the algorithm makes predictions for
each of the K steps ranging from 1....K. These predictions
are made by a model uθ where θ are parameters condi-
tioned on past observations o1, o2....ot and future actions
at, at+1....at+k. The model predicts the following quanti-
ties:

• The policy pkt ≈ π(at+k+1|o1, ..., ot, at+1, ..., at+k)

• The value function vkt ≈ E[ut+k+1 + γut+k+2 +
...|o1, ..., ot, at+1, ..., at+k]

• The immediate reward rkt ≈ ut+k
where u is the true observed reward, π is the policy used
to select real actions, and γ is the discount function of the
environment.

The internal representation at each timestep consists of
the dynamics, prediction and representation functions as de-
scribed above. Given this model, it is possible to search over
hypothetical future trajectories a1, ..., ak given past obser-
vations o1, ..., ot. At each timestep t in the environment, the
algorithm executes a Monte-Carlo Tree Search as shown in
Figure 1B. An action at+1 is sampled from the policy πt,
sent to the environment and observation ot+1 and reward
ut+1 are generated. At the end of the episode, this trajectory
is stored into the replay buffer.

As shown in Figure 1C, when training the model, a tra-
jectory is sampled from the replay buffer, the observations
o1, o2...ot are passed to the representation function h. The
model is unrolled for K steps and each step receives the
action at+k and hidden state sk−1. The parameters of the
dynamics, prediction and representation functions are sub-
sequently jointly trained via backpropagation.

The overall loss function with L2 regularization is given
by:

lt(θ) =
K∑
k=0

lr(ut+k, r
k
t ) + lv(zt+k, v

k
t ) + lp(πt+k, p

k
t ) +



c||θ||2
where lr, lv , and lp are loss functions for reward, value

and policy respectively.

Deep-Q-Networks and Double-Q-Learning

Figure 2: Deep-Q-Network Structure for Atari 2600. This
figure has been taken from the DQN paper [17] and is owned
by the original authors.

Deep-Q-Networks [17] are a model-free approach
designed to provide human-like control in visually rich
environments. Figure 2 shows the structure of a sample
Deep-Q-Network used to play Atari 2600 games. This
approach uses a deep convolutional network to approximate
the optimal value function:

Q∗(s, a) = max{π}[rt + γrt+1 + γ2rt+2...|st = s, at =
a, π|]

which is the maximum sum of rewards rt discounted
by γ at each time-step t, achievable by a behaviour policy
π = P (a|s), after making an observation s and taking an
action a.

The paper uses experience replay i.e. selecting a random
set of experiences during Q-updates, which removes correla-
tions in the observation sequence and smooths over the data
distribution. They also use an iterative update which only
adjusts Q towards target values which are periodically up-
dated. These methods are used to reduce instabilities which
can arise in Q-updates due to correlations in observational
data.

They parameterize a Q function Q(s, a; θi using the
convolutional network where θ are the weights of the
Q-network at iteration i. The agent’s experiences at each
time step t are stored in a replay buffer in the format
et = (st, at, rt, st+1). During training, Q-learning is
applied on a minibatch of samples chosen uniformly at
random from all the experiences in the stored pool. The
Q-learning at iteration i uses the following loss function:

Li(θi) = E(s, a, r, s) ≈ U(D)[(r +
γmaxa′ Q(s′, a′; θ−i −Q(s, a; θi)

2]

in which γ is the discount factor determining the agent’s
horizon, θi are the parameters of the Q-network at iteration
θ−i are the network parameters used to compute the target at
iteration i.

They evaluated the Deep-Q-Network on the Atari 2600
benchmark and it achieved more than 75% of a professional
human tester’s score across more than half of the games. It
was also better than a linear approximator on a majority of
the games [17].

However, Hasselt et al [11] demonstrated that this algo-
rithm can be overly optimistic, overestimating action values
under certain conditions. They evaluated this behavior on
the Atari 2600 [3] benchmark and showed that it can result
in suboptimal performance. They then proposed a few spe-
cific changes to the DQN [17] algorithm and proposed the
Double-Q-Learning [11] approach, which performed signif-
icantly better in comparison to the DQN [17] approach on
the Atari [3] benchmark.

Super Mario Bros
Super Mario Bros [26] is a 1985 arcade platform game de-
veloped and published by Nintendo. Players assume the role
of Mario and the aim is to traverse multiple levels consist-
ing of various obstacles, traps and monsters. These obstacles
can range from static walls to secret pipes which can tunnel
players to other levels. Levels can be of two kinds: Over-
world levels and Underwater levels. Underwater levels have
different movement mechanics and are considered to be out
of the scope of this project.

Each level can consist of multiple hazards such as pits and
moving enemies, as well as power-ups such as the Mush-
room and the Fire Flower which can significantly aid play-
ers in level completion. The collective set of actions taken
by a player throughout the level, including destroying en-
emy monsters and picking up power-ups, contribute to their
overall score for the level, displayed on the top right of the
screen by convention.

Evaluation Environment
Evaluation Framework In order to train and evaluate the
algorithms, the OpenAI Gym framework [4] has been used.
Super Mario Bros has been ported to this framework in the
form of the super-mario-bros [15] package which has been
used as well. MuZero [23, 10] and DQN [17] implementa-
tions have been modified / rewritten in order to work with
this interface. DQN with Double-Q-Learning [11] has been
selected as the primary baseline to evaluate MuZero’s per-
formance as DQNs have provided solid erformance in visu-
ally rich environments such as on the Atari 2600 benchmark
[17, 11].

The algorithms’ performances have been compared using
the training score (a.k.a the reward) attained on a selected
overworld level after a fixed number of training episodes.
They have both been trained on the same overworld level.

Hardware and Software Setup Both algorithms have
been trained and evaluated on the same machine with the
following characteristics:

• CPU: AMD Ryzen 5800X

• GPU: Nvidia RTX 3060

• Memory: 16 Gigabytes



• Nvidia Driver and CUDA Versions: nvidia-driver-495
and CUDA 11.5

• Operating System: Ubuntu 20.04.3 LTS (Focal Fossa)
• Python: Python 3.8.10
• PyTorch: PyTorch v1.10.0
• TensorFlow: Tensorflow v2.7.0

Results
Deep-Q-Networks with Double-Q-Learning
A custom DQN with Double-Q-Learning has been imple-
mented using PyTorch to play Super Mario Bros. The class
diagram for our implementation has been shown below and
a few key functions have been described in detail.

Figure 3: Double Deep-Q-Learning for Super Mario - Class
Diagram

The code structure is described below:

Class - super-mario-bros This is the super-mario-bros
base package [15] which provides access to the SuperMario
Bros [26] environment via an OpenAI Gym [4] interface. It
contains the underlying environment parameters as well as
functions such as reset(), step() and initialize() which per-
form functions as outlined in the Gym [4] documentation.

Class - SuperMarioWrapper This is a class which wraps
around the base super-mario-bros class and contains the fol-
lowing parameters:
• Action Space: The total action space accessible by the

agent. For the scope of this project, we have limited the
action space to RIGHT ONLY and disabled more com-
plex movement patterns. This action space consists of 5
actions including Jump and Move Right.

• Preprocess Frame(): This converts the incoming frame
into a 96x96 greyscale frame to be used as part of the
input state.

• Normalize Frame(): Normalizes the pixel values within a
frame to fall within the range 0 to 255.

Class - DDQN This is the core class that holds the hyper-
parameters for the Double Deep-Q-Network as well as the
experience buffer. It also contains all functions relevant to
DQN operations, described below:
• Learning Rate, Discount Factor and Exploration Decay:

Hyperparameters used to train Double Deep-Q-Networks
as mentioned in previous literature [11, 18].

• Experience Buffer: Buffer used to hold experiences from
which a random batch of experiences is sampled during
learning. Each experience is of the form (state 1, action,
reward, state 2, terminate where state 1 and state 2 rep-
resent the initial and final states, action represents the
action taken. reward represents the reward obtained and
terminate indicates whether the episode was terminated
after this experience.

• select action(): Function to select the next action based
on the greedy policy, as outlined in [18, 11].

• save state to file(): Saves the network as a pickled file, in
order to reload it later for testing if necessary. This func-
tion also dumps the rewards obtained per episode during
training into a JSON file for further analysis.

• run training(): Trains the model for the specified number
of training episodes.

• render state(): This is to render the environment state into
a human readable form during testing.

• store experience(): Saves an experience in the Experience
Buffer for sampling at a later time.

• sample experience(): Randomly sample a batch of expe-
riences from the Experience Buffer.

• experience replay(): ’Replays’ a set of sample experi-
ences, updating network parameters and performing Q-
Learning.

• plot rewards(): Visualizes the training rewards obtained
per episode.

Deep-Q-Networks with Double-Q-Learning:
Hyper-parameter Tuning
We have examined three distinct hyper-parameters for Dou-
ble Deep-Q-Networks and tuned their values. Due to com-
putational power limitations, 1000 training episodes were
run for each hyper-parameter value and the results have
been outlined below. For detailed descriptions of each of
the hyper-parameters, please refer to the original papers [18,
11].

Discount Factor We have examined three distinct values
for the discount factor γ. The graph of training rewards vs
training episodes has been shown below along with a tabu-
lation of key statistics from these episodes.



Figure 4: Deep-Q-Networks - Discount Factor Tuning
As we can see from the results of Figure 4, the optimal

value for the discount factor γ = 0.9. While γ = 0.85 pro-
duces similar results, this value produces a slightly higher
average training reward. Higher values of γ such as 0.95 and
0.99 make the performance significantly worse.

Learning Rate We have examined four distinct values for
the learning rate α. The graph of training rewards vs training
episodes has been shown below along with a tabulation of
key statistics from these episodes.

Figure 5: Deep-Q-Networks - Learning Rate Tuning
As we can see from the results of Figure 5, the optimal

value for the learning rate α = 0.00035. While other values
also produce similar results, this value produces a slightly
higher average training reward.

Exploration Decay We have examined three distinct val-
ues for the exploration decay factor. The graph of training
rewards vs training episodes has been shown below along
with a tabulation of key statistics from these episodes.

Figure 6: Deep-Q-Networks - Exponential Decay Factor
Tuning

As we can see from the results of Figure 6, the optimal
value for the exponential decay factor is 0.95. While other
values also produce similar results, this value produces a
slightly higher average training reward.

MuZero
The MuZero implementation on Github [10] uses Tensor-
Flow. It can handle simple OpenAI Gym [4] based games
such as the Cartpole [4] game. This implementation has been
modified heavily to enable it to work with Super Mario Bros.
The code structure for the modified implementation has been
shown below:

Figure 7: MuZero for SuperMarioBros - Components

Figure 8: MuZero for SuperMarioBros - Class Diagram

Class - super-mario-bros This is the super-mario-bros
base package [15] which provides access to the SuperMario
Bros [26] environment via an OpenAI Gym [4] interface. It
contains the underlying environment parameters as well as
functions such as reset(), step() and initialize() which per-
form functions as outlined in the Gym [4] documentation.

Class - SuperMarioWrapper This is a class which wraps
around the base super-mario-bros class and contains the fol-
lowing parameters:



• Action Space: The total action space accessible by the
agent. For the scope of this project, we have limited the
action space to RIGHT ONLY and disabled more com-
plex movement patterns. This action space consists of 5
actions including Jump and Move Right.

• Preprocess Frame(): This converts the incoming frame
into a 96x96 greyscale frame to be used as part of the
input state.

• Normalize Frame(): Normalizes the pixel values within a
frame to fall within the range 0 to 255.

Class - BaseNetwork This is the BaseNetwork class from
the MuZero Github repository [10]. It contains the underly-
ing policy, reward, value, dynamics and representation net-
works.

Class - SpecializedNetwork This type of network is tai-
lored to the SuperMarioBros environment and has been cus-
tom implemented. It has the following functions:
• initialize underlying nw(): This function creates and ini-

tializes the policy, value, reward, dynamics and represen-
tation networks from the BaseNetwork class.

• transform value reward(): Transformation function for
rewards and values.

• compute softmax(): Function to compute softmax values
for actions efficiently.

• initial inference() and recurrent inference(): Functions
consistent with the expected network representation
within the Muzero repository [10].

Class - UniformPolicyNetwork This type of network as-
signs uniform values to all possible actions i.e. represents
a uniform policy. This network is used to fill the experi-
ence buffer for MuZero with a few episodes at the start of
the training session. In our experiments, we have used this
UniformPolicyNetwork to save up to 100 episodes into the
replay buffer at the start of training sessions. The same ex-
periences have been used across all hyper-parameter value
tuning training runs as well.

Class - SharedStorage This class is a modified version
of the SharedStorage class from the public MuZero reposi-
tory [10]. It stores multiple copies of each kind of network it
holds. It has been modified to hold the new SpecializedNet-
work along with the UniformPolicyNetwork. Its functions
are as follows:
• get latest network(): Returns the latest updated network

from storage.
• save network(): Saves the network from the specified

time step into a pickled file for retrieval and usage later.

Class - MuZeroConfig Holds the hyperparameters and
configuration info for the underlying MuZero algorithm.
This is a modified version of the MuZeroConfig class within
the public repository [10].

Class - SelfPlay Contains functions to run training
episodes, populate the experience replay buffer, update the
underlying networks as well as search for the optimal move
using the specified networks’ policy.

Class - MarioAgent This is the main driver class for the
entire program. It holds an instance of the MuZeroConfig
class as well as other parameters such as the number of train-
ing episodes to run. It interacts with various modules such
as the SuperMarioWrapper, SharedStorage and the SelfPlay
modules. Its functions are as follows:

• run training(): Runs the specified number of training
episodes using the SelfPlay and SharedStorage modules.

• generate train gif(): Runs the specified number of train-
ing episodes using the SelfPlay and SharedStorage mod-
ules and generates human readable GIFs showing the ac-
tions taken in each episode.

• save state(): Saves states to the specified log directory
paths utilizing save functions within other modules.

MuZero: Hyper-parameter Tuning

We have examined and tuned four hyper-parameters for
MuZero with SuperMarioBros. The following subsections
outline our efforts on each hyper-parameter in detail. For
detailed descriptions of the hyper-parameters, please refer
to the original MuZero paper [23]. As MuZero was compu-
tationally intensive, 500 training episodes have been run for
each hyper-parameter value.

Learning Rate We have examined four distinct values for
the learning rate α. The graph of training rewards vs training
episodes has been shown below along with a tabulation of
key statistics from these episodes.

Figure 9: MuZero - Learning Rate Tuning

As we can see from the results of Figure 9, the optimal
value for the learning rate α = 0.0002. This value produces
the best average and peak training rewards.

Discount Factor We have examined three distinct values
for the discount factor γ. The graph of training rewards vs
training episodes has been shown below along with a tabu-
lation of key statistics from these episodes.



Figure 10: MuZero - Discount Factor Tuning
As we can see from the results of Figure 12, the optimal

value for the learning rate γ = 0.9. This value produces the
best average and peak training rewards.

Number of Look-ahead Actions We have examined five
distinct values for the number of look-ahead actions. The
graph of training rewards vs training episodes has been
shown below along with a tabulation of key statistics from
these episodes.

Figure 11: MuZero - Lookahead Actions Tuning
As we can see from the results of Figure 12, the optimal

value for the number of look-ahead actions is 10. This value
produces the best average and peak training rewards.

Number of Unrolled Steps We have examined five dis-
tinct values for the number of unrolled steps. The graph of
training rewards vs training episodes has been shown below
along with a tabulation of key statistics from these episodes.

Figure 12: MuZero - Unrolled Steps Tuning
As we can see from the results of Figure 12, the optimal

value for the number of unrolled steps is 5. This value pro-
duces the best average and peak training rewards.

MuZero vs Deep-Q-Networks with Double-Q
Learning
Computational Performance Comparison

Figure 13: MuZero vs DDQN - Computational Performance

We analyzed the computational performance of both algo-
rithms by recording the amount of time taken to train 2500
episodes of each algorithm. We have presented our results
in Figure 13, which contains both algorithm’s performances
scaled to that of MuZero as a baseline (100%). From the
graph, we can see that Double Deep Q Learning is much
more computationally efficient than MuZero and it takes
nearly 6 times the amount of time for MuZero to go through
the same number of episodes as Double Deep Q Networks.
This had a significant impact on our experiment as we were
restricted to a lower total number of training episodes on
MuZero due to computational restrictions.

This performance difference could be attributed to multi-
ple factors such as:

• The computational nature of the algorithms themselves

• Double Deep Q Networks were implemented using Py-
Torch whereas the public MuZero implementation [10]
uses TensorFlow

• The public MuZero implementation [10] may need to be
optimized for performance. While we have put some ef-
fort into this, a full scale performance optimization of this
repository was beyond the scope of this project.

Evaluation and Comparison on Super Mario Bros

Figure 14: MuZero vs DDQN



We have trained the modified MuZero implementation as
well as the Double Deep Q Networks implementation using
Super Mario Bros for 3000 episodes each and presented our
results in Figure 14. We can make the following observations
from the graphs:

• MuZero and Double Deep Q Networks achieve similar
training performance across the 3000 episodes they were
run for. MuZero performs very slightly better in terms of
average reward per training episode and peak rewards.

• Both algorithms seem to have similar increases in average
reward over time

However, it must be noted that training MuZero took
nearly 6 times as long as training Double Deep Q Networks,
as mentioned above.

Discussion
Result Analysis The goal of this project was to examine
if MuZero [23] held up its impressive performance record
against DQNs on the Atari ALE benchmark [3, 23] on other
visually rich environments as well. Our examination reveals
that this indeed does appear to be the case, as we can see
that MuZero performs similar to if not slightly better than
Deep-Q-Networks with Double-Q-Learning [11]. Over the
3000 training episodes that were run on each algorithm,
the average and peak training rewards achieved by MuZero
seem to be similar to those of the Double Deep-Q-Network.
This falls in line with previous literature [23] where it ini-
tially demonstrated its performance record on the Atari ALE
benchmark [3].

However, it is worth mentioning that the computational
performance of these algorithms has not been analyzed
in previous literature. Our analysis shows that Deep-Q-
Networks with Double-Q-Learning are significantly more
computationally efficient than MuZero. Further perfor-
mance analysis is necessary to confirm if the performance
gap observed is merely a result of an unoptimized imple-
mentation or a function of the algorithms themselves, as
noted in our results.

Limitations There were a few limitations in our analysis
which have been outlined below:

• Due to limited available computational resources, we
were unable to evaluate all the possible hyper-parameters
of MuZero and Double Deep-Q-Networks. We acknowl-
edge that this might not be the best obtainable perfor-
mance for these algorithms.

• Due to the limited available computational resources and
the duration of this project, we were unable to run our
evaluation on multiple overworld levels and were re-
stricted to looking at a single level during training. Al-
gorithmic performance might differ on other levels, espe-
cially those with different mechanics such as underwater
levels.

Conclusion
In this project, we have attempted to train and evaluate the
model-based MuZero algorithm’s [23] performance on the

popular game Super Mario Bros [26]. We have also com-
pared its performance to Deep-Q-Networks with Double-Q-
Learning, the state of the art model-free algorithm tradition-
ally used with visually rich environments. We have imple-
mented a custom Deep-Q network for this task using Py-
Torch and modified the public MuZero implementation [10]
in order to do so.

The key takeaway from this project is that MuZero does
indeed achieve comparable performance to that of Deep-Q-
Networks on Super Mario Bros. However, the computational
performance of each algorithm is vastly different and further
examination is required into the cause of this gap. The fol-
lowing research directions are possible for this project:

• Further examination of hyper-parameters for MuZero and
DDQN

• Evaluation using multiple overworld training and testing
levels

• Performance comparison on underwater levels with dif-
ferent mechanics

• Investigation into the large computational cost differences
between MuZero and Double-Deep-Q-Networks
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